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Abstract 
 

The quest to understand the mechanisms of the origin of life on 

Earth could be enhanced by computer simulations of plausible stages 

in the emergence of life from non-life at the molecular level. This class 

of simulation could then support testing and validation through parallel 

laboratory chemical experiments. This combination of a computational, 

or “cyber” component and a parallel effort investigation in chemical 

abiogenesis could be termed a cyberbiogenesis approach. The central 

technological challenge to cyberbiogenesis endeavours is to design 

computer simulation models permitting de novo emergence of prebiotic 

and biological virtual molecular structures and processes through 

multiple thresholds of complexity. This thesis takes on the challenge of 

designing, implementing and analyzing one such simulation model. 

This model can be described concisely as: distributed processing and 

global optimization through the method of search coupled with 

stochastic hill climbing supporting emergent phenomena within small 

volume, short time frame molecular dynamics simulations. 

 

The original contributions to knowledge made by this work are to 

frame computational origins of life endeavours historically; postulate 

and describe one concrete design to test a hypothesis surrounding this 

class of computation; present results from a prototype system, the 

EvoGrid, built to execute a range of experiments which test the 

hypothesis; and propose a road map and societal considerations for 

future computational origins of life endeavours.  
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Glossary of Key Terms 

 
Ab initio – in Latin “from the beginning” within chemical experiments means 
that phenomena observed result from a system which starts from a basis of 
very simple molecules or free atomic elements. These phenomena are also 
described as emerging de novo. 
 
Adjacent possible – from Stuart Kauffmann (Kauffman, 2000, p. 42) “the 
becoming of the universe can involve ontologically both the Actual and the 
Possible, where what becomes Actual can acausally change what becomes 
Possible and what becomes Possible can acausally change what becomes 
Actual.” 
 
Artificial Chemistry – often abbreviated to AChem, is a system in computer 
software designed to simulate the dynamic motion and interaction of atoms, 
molecules or larger groups of molecules. Dittrich (Dittrich et al., 2001) defined 
an AChem as “a triple (S, R,A) where S is the set of all possible molecules, R 
is a set of collision rules and A is an algorithm describing the domain and how 
the rules are applied to the molecules inside (the physics).” 
 
Artificial life – a field of computer science which seeks to simulate aspects of 
living systems within abstract computational universes. Alife, as it is 
abbreviated often seeks to model and study evolutionary processes. 
 
Abiogenesis – the study of how living systems arose from non-living 
molecules. 
 
Cameo simulation – a term coined by the author to refer to simulations of 
small volumes of artificial chemistries where the goal is the observation of 
isolated, limited phenomena such as the formation of the single type of 
molecule. 
 
Cellular automata - a mathematical construct in which a regular grid of cells, 
each in a finite number of states, interact by changing their states based on a 
set of rules of interaction with a neighbourhood of cells adjacent to each cell. 
 
Chemical equilibrium – the state achieved when the rates of conversion of 
chemical X to chemical Y and the backward conversion of chemical Y to X 
are equal. 
 
Classical dynamics – a system employing Newtonian dynamics or “magnetic 
ball” metaphors in the interaction of particles such as atoms as opposed to 
quantum dynamics interactions. 
 
Coarse graining – a method for modeling and simulating chemical 
interactions in which atoms or molecules are grouped together as units. 
These techniques offer significant cost savings over atom-scale simulation 
such as Molecular Dynamics. 
 
Commodity cluster – a set of standard, commercially available computer 
systems networked together into a single computing resource to be applied to 
scientific and other problems. 
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Complexity – a broad term applied to a number of fields but in the context of 
biochemistry and simulation it is a property of a system to generate a number 
of structures (molecules) or relationships between structures (reactions). The 
larger variety of structures and relationships, the more complex the system is 
deemed to be. 
 
Cyberbiogenesis – a new term coined within this thesis that describes a 
pathway that begins with a simulation of a molecular origin of life stage or 
series of stages, that continues into verification by bench chemical 
experimentation. 
 
Distributed or grid computing – a branch of computer science that builds and 
studies software systems working across a distributed network of computers. 
These systems often operate by breaking up a large computational problem 
into pieces and perform computing on those pieces within different 
computers. 
 
de novo – from Latin “from the beginning” used in biochemistry to indicate 
that complex molecules have been synthesized from the interactions of 
simpler molecules. Related to the term ab initio. 
 
Emergence – within the fields of simulation, biochemistry, and evolutionary 
biology, the appearing of a new structure or behaviour that is a substantial 
departure in form or function from the simpler components which combined to 
make it occur. 
 
Epistemology – in the scope of this work, the framework of acquiring 
knowledge through the scientific positivist approach utilizing a hypothetico-
deductive method. 
 
Ergodic – a hypothesis that says that over long periods of time particle which 
has access to microstates will with equal probability occupy these microstates 
over the whole phase space. 
  
Fidelity – a measure of the quality of a simulation when compared with the 
physical phenomena being modeled, the closer the outcomes of the 
simulation are to predicting the behavior in physical reality, the higher the 
fidelity of the simulation. 
 
Fitness landscape – a mathematical abstraction of the solution space 
occupied by adaptive systems such as those found in evolutionary biology or 
chemical systems. Fitness landscapes are expressed in terms of “hills” and 
“valleys” plotted from the scores generated by evaluations of a fitness 
functions for candidate solutions, which as an example might include a living 
organism or a chemical catalyst. 
 
Genes of emergence – a term by the author in which the parameters to a 
cameo chemical simulation when coupled with a search function may be 
thought of as a genetic code expressing the potential for emergent 
phenomena in future executions of the simulation space. 
 
Hill climbing - a mathematical optimization technique utilizing iteration to 
incrementally change one element of a solution and if that produces a more 
optimal solution, change that element again until no further optimizations can 
be found. This is a means for the discovery of local optimal or maxima. 
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Hypopopulated – a term by Kauffman referring to large chemical reaction 
graphs in which there are a sparse number of reactions occurring. 
 
In silico – an expression meaning that an action is performed by software 
running on a computer system, often in contrast to the term in vitro. 
 
In vitro – from the Latin “within glass” is an expression meaning that an action 
is performed within physical chemistry, such as in wet or bench chemistry in a 
laboratory setting. 
 
Interstellar chemistry – the chemical regime of the space between star 
systems, usually characterized by the presence of atomic elements, dust and 
icy particles. 
 
Local optima or maxima – a formalism in mathematics and computer science 
in which a solution appears to be optimal or at a maximum when compared 
with neighboring solutions. This concept is often applied to fields such as data 
mining, materials science, and evolutionary biology, all of which are 
characterized by large sets, or fitness landscapes of possible solutions. 
 
Molecular dynamics - a computer science discipline of molecular modeling 
and computer simulation utilizing statistical mechanics. Molecular dynamics 
usually models chemical systems at the level of individual atoms, as opposed 
to coarse graining techniques which might model groups of atoms as a unit. 
 
Ontology – is the philosophical study of reality and the nature of being and its 
basic categories. In the context of this work we use the ontological 
assumption that it is possible to know the mechanisms of life arising from 
non-life. 
 
Optimization – a method or algorithm in a computer simulation system which 
is designed to improve the performance of that system by a significant factor. 
Performance improvements could include increased likelihood of an 
emergent phenomenon occurring, and a reduction of time or computing 
resources necessary for phenomena to occur. 
 
Origin of life – the field of science which seeks to understand and test 
plausible pathways from a world of simple pre-biotic molecules and a world of 
biological entities, sometimes called protocells,  
 
Physicodynamic – a term coined in (Abel, 2009b) which expresses the 
actions observable in nature which are entirely driven by physical processes, 
as opposed to models in science which are built from logical and symbolic 
formalisms. 
 
Physics – a set of abstract, often formulaic representations of observed 
dynamical behavior in nature, such as the movement of and interaction 
between objects like atoms, balls or star systems. 
 
Protocell – a term in origins of life research indicating a molecular complex 
exhibiting early traits of a living system, akin to a cell. A protocell may have 
the properties of encapsulating a volume, supporting metabolic energy and 
material handling, and the reproduction of the whole system into “daughter” 
protocells. 
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Quantum dynamics Interactions – is the quantum version of classical 
dynamics interactions often modeled at the level below individual atoms 
where motion, energy, and momentum exchanges are governed by the laws 
of quantum mechanics. 
 
Ratchet – a mechanical device such as a gear that allows movement in only 
one direction due to a mechanism limiting backwards movement. This is 
applied to complexity problems and evolution through the observation that 
phenomena becoming more complex resist losing that complexity and are 
therefore said to be subject to a ratcheting effect. 
 
Reaction Graph - a representation of a set of reacting chemicals that 
transform into one another. 
 
Search – an ontological mechanism represented in a software algorithm that 
seeks to track the behavior of a data set from a simulated system and report 
that behavior to an end user. 
 
Simulation – the implementation of a physics as an abstract model of reality 
in software and the execution and analysis of that software in computers. 
 
Stochastic - from the Greek for aim or guess denotes random. A stochastic 
process is one based on non-deterministic or probabilistic inputs as well as by 
predictable factors. 
 
Stochastic hill climbing – a method of hill climbing for navigating fitness 
landscapes which uses a local iterative optimization involving the random 
selection of a neighbor for a candidate solution but only accepting it if the 
neighbor is equal to or improves upon the current or parent solution. 



 
 

 xvi

Acknowledgements and Dedications  
 

The process of researching cyberbiogenesis computational 

origins of life endeavours and then constructing and testing the 

EvoGrid prototype was a highly interdisciplinary activity. This work 

touched on a wide range of fields including computer simulation, 

complexity science, artificial life, biochemistry, origin of life biology, 

philosophy, religion, and ethics. Before undertaking this endeavour I 

sought out an independent, informal but significant advisory group to 

review and critique the research goals, and to suggest further readings 

and avenues of investigation. I would like to thank the following 

individuals for their irreplaceable counsel, direction, insights and, 

especially, help with testing and shaping the ideas in this thesis: 

• Professor Richard Gordon, Professor of Radiology, University of 

Manitoba, for his guidance on complexity, concepts of genesis and 

emergence in nature, and for posing the challenge that led to this 

effort 

• Mr. Tom Barbalet, founder of the Noble Ape project, publisher of 

Biota.org and host of the Biota podcast, for his continuous tracking 

and feedback on the EvoGrid concept and enterprise, including 

hosting public discussions on the concept through the Biota podcast 

• Professor David Deamer, Professor of Chemistry, University of 

California at Santa Cruz, for advice in the principles of biochemistry 

and models for the origins of life, and for providing contacts with those 

working in the field. 

 

In addition, I would like to acknowledge the following individuals 

for their many contributions: 

• Professor Tom Ray, Department of Zoology, University of Oklahoma 

at Norman, for challenging me early on about what was being 

attempted and why it would be new from the perspective of progress 

in artificial life. 

• Professor Steen Rasmussen of the Dept. of Physics and Chemistry, 

University of Southern Denmark, for providing insights into in vitro 



 
 

 xvii

chemical protocell models and the importance of simulation for the 

field. 

• Dr. Martin Hanczyc, Dept. of Physics and Chemistry, University of 

Southern Denmark, for shepherding me into the experimental world of 

chemical protocell formation and behaviour. 

• Dr. Harold Fellermann, Dept. of Physics and Chemistry, University of 

Southern Denmark, for providing first hand insight into the challenges 

of simulating chemical activities and for his exemplary work on lipid 

nanocell simulation which served as a major proof-of-concept for this 

work. 

• Professor Anand Rangarajan, University of Central Florida, 

Gainesville, for providing a historical review and key problems of the 

field of complexity science and helping me to place the EvoGrid within 

this context. 

• Professor Stuart Kauffman, formerly of the Institute for Biocomplexity 

and Informatics, University of Calgary, Canada, and currently Finland 

Distinguished Professor at Tampere University of Technology, for 

spending time explaining how the universe might be organized into 

formulaic, complex and novelty driven phases (the “Adjacent 

Possible”), depending on where and when you are looking. I also have 

to thank him for giving a major direction to the EvoGrid project as an 

experimental platform to explore his concept of the Adjacent Possible 

and a possible “Fourth Law of Thermodynamics”. 

• Professor Doron Lancet, Dept. Molecular Genetics, Weizmann 

Institute, Israel, for great encouragement by emphasizing the 

necessity for this work and for illuminating approachs to distributed 

artificial chemistry. I would also like to acknowlege him for coining the 

term “computational origin of life endeavour“. 

• Dr. Penny Boston, Dept of Earth & Environmental Science, New 

Mexico Tech, for offering the key unanswered question of this 

research: whether to simulate the chemistry or construct a more 

tractable abstract universe to show the way to complex self 

organization. 

• Dr. Rachel Armstrong, Bartlett School, University College London, UK, 

for leading me into the world of chemical protocell research through 

her energy, knowledge and personal connections in the field. 



 
 

 xviii

• Dr. Neil Datta, then at Imperial College London and now an 

independent researcher, for discussions on mathematical 

representations of complexity and for reviewing the clarity and 

presentation of research in the draft thesis.  

• Professor Piet Hut, Institute for Advanced Study, for encouraging me 

to pursue institutional affiliation and the PhD degree and introducing 

me to key people and resources at the Institute. 

• Professor Freeman Dyson, Institute for Advanced Study, for providing 

kind enthusiasm, effort and guidance about the true messiness of 

nature as contrasted with the overly neat toy universes often realized 

through computing. 

• Mr. George Dyson for providing a compelling first hand account of the 

history of computing at the Institute for Advanced Study and Nils Aall 

Barricelli’s early digital experiments in artificial evolution.  

•  The Shelby White and Leon Levy Archives Center at the Institute for 

Advanced Study for assistance with and access to the Robert 

Oppenheimer director’s files on the Electronic Computer Project, 

including John von Neumann’s correspondance, notes, reports and 

output from Nils Aall Barricelli’s numerical symboorganisms program. 

• Dr. Nick Herbert, physicist and author, for personal guidance and 

encouragement and insights into the non-intuitive world of quantum 

dynamics. 

• Dr. Brian Allen, MAGIX Lab, UCLA, for bringing to my attention the 

key observation of the property of thresholds of complexity in any 

complex, lifelike system. 

• Dr. Karl Sims, GenArts, Inc., Cambridge MA, for hiking up the 

mountain with me at the Burgess Shale, providing inspirational early 

work in artificial evolution, and continued enthusiasm for my efforts. 

• Dr. Tim Taylor, independent researcher, for his earlier influential work 

in the simulation of bio-inspired systems. 

• Mr. Tim McFadden, independent researcher, San Jose, for bringing to 

my attention Shannon information theory and alternative ways of 

considering information in nature. 

• Dr. Peter Bentley, University College London, UK, for presenting 

challenges regarding the viability of the von Neumann computer 

architecture to simulate nature. 



 
 

 xix

• Mr. Gerald de Jong, Rotterdam, the Netherlands, for building and 

fielding accessible works of artificial evolution to a World Wide Web 

audience. 

• Professor Addy Pross, Department of Chemistry, Ben-Gurion 

University of the Negev, Israel, for taking the time to explain 

passionately his perspective on the genes-first model of the origin of 

life. 

• Professor Robert Shapiro, New York University, for kind guidance of 

my understanding of the arguments on all sides of the origins of life 

question. 

• Dr. Jim Cleaves, Geophysical Laboratory, Carnegie Institution for 

Science, Washington D.C, for providing key historical perspective and 

materials in origins of life thinking. 

• Dr. Andrew Pohorille, Exobiology Branch, NASA Ames Research 

Center, for providing many writings about early membrane and 

protocell development and a perspective from Astrobiology. 

• Dr. Sandra Pizzarello, Arizona State University, for providing insights 

into extraterrestrial sources of bio-relevant materials. 

• Dr. Wes Clark and Dr. Maxine Rockoff for their repeated hospitality in 

Brooklyn and for asking key questions and suggesting valuable 

personal connections. 

• Mr. Fred Stahl, Author, Arlington, VA, for providing key historical 

materials on his work in the early 1960s that picked up where John 

von Neumann left off. 

• Professor Emeritus Richard Dawkins, Oxford University, UK, whose 

hospitality, early encouragement and challenge in defining a living 

system and simulating evolution led directly to the formulation of the 

EvoGrid effort. 

• Last but not least in this list I would like to thank Dr. Chris Langton, 

who warmly welcomed me as a visitor to the Santa Fe Institute in 

1994 and over the years supported the Digital Biota conferences and 

our frequent meetings in virtual worlds. 

 

I would also like to acknowledge the support team at my 

company DigitalSpace who produced the computer software coding of 

the EvoGrid prototype under my direction. This implementation of my 



 
 

 xx

designs permitted testing of the hypothesis proposed in this thesis. 

Peter Newman worked tirelessly to assemble standard open source 

components and then code the unique connective algorithms to 

implement the first prototype. He also assisted me as I set up and 

operated the initial computing grid which generated the first results. 

Ryan Norkus is specially acknowledged for taking my scribbled 

sketches and producing many fine explanatory figures, 3D computer 

graphics and fully rendered movies. I also would like to thank Miroslav 

Karpis who volunteered his time to build the WebGL 3D interface to 

allow me to see and run additional analysis on the frames of atoms and 

molecules. Lastly I offer my gratitude to John Graham of Calit2 at the 

University of California at San Diego for working tirelessly to set up and 

support the second EvoGrid simulation network. 

 

Next I would like to express immeasurable gratitude to Basit 

Hamid, Founder and CEO of Elixir Technologies Corporation for his 

belief in me through twenty-five years of friendship, for providing 

funding and logistical support for this PhD work including travel and 

fees, and for his lifelong encouragement of me to pursue academic 

excellence. 

  

My supervisory team including Director of Studies Professor 

Lizbeth Goodman, Professor Sher Doruff, Professor Jacquelyn Ford 

Morie and external supervisor Professor Dominic Palmer-Brown are all 

thanked profusely for their time and careful review over the years and 

for always being there and coming through as I have advanced through 

the process. 

 

I would also like to acknowledge and thank my wife, Galen 

Brandt, for providing her unwavering support for my life and health 

throughout this process and serving as a valued sounding board for 

these ideas. My brother Dr. Eric Damer is also thanked for doing a 

comprehensive pass over the thesis for syntax and clarity. 

 



 
 

 xxi

This work is posthumously dedicated to Douglas Adams and 

Professor Stephen J. Gould both of whom I sought contact with during 

the early research for this effort. Mr. Adams was a keynote speaker at 

the second conference in my Digital Biota series and would have 

appreciated the planet-sized nature of this computing challenge about 

life, the universe and everything. Professor Gould, while explaining to 

me how he was not very digital, patiently listened to my explanations of 

how we might simulate the Burgess Shale ecosystem and still wanted 

to be kept closely informed. So, Professor Gould, this is my belated 

report on progress so far.  

 

A final dedication goes to my parents, Enid and Warren Damer. 

Enid instilled in me my work ethic and Warren my love of ideas. One of 

the last conversations with Warren before his passing was to update 

him on the progress of this PhD and I know he would be proud of and 

curious about this work. 

 



 
 

 xxii



 

Introduction 

 

Preamble and Overview 
 

The research question of this thesis was discovered through a 

thought experiment surrounding the prospects of the discovery, 

through digital simulation, of plausible pathways to an origin of life on 

Earth. From this thought experiment and a review of a number of 

cognate fields emerged a design for an initial prototype (the EvoGrid) 

as a possible first step toward a full computational origin of life 

endeavour. Evaluating the strengths and limitations of the prototype 

implementation then provided the basis to enumerate a roadmap and 

open questions for future researchers undertaking to simulate life’s 

origins. An overview of the contents of the thesis follows: 

• As contextual background, a history of the earliest concepts of using 

computers to simulate living systems; 

• A thought experiment on the vision of simulating life’s origins; 

• A review of the main cognate fields approaches to computational 

origins of life endeavours including a novel map of the 

interrelationships of the cognate fields. 

• A listing of the basic principles, assumptions and challenges facing 

such endeavours. 

• A set of design choices in computing frameworks for origins of life 

endeavours. 

• A prototype implementation (the EvoGrid) built, executed and results 

then analyzed to illustrate a few of the challenges that would be faced 

by future origin of life simulation efforts. 

• A road map and enumeration of some open questions on the future 

evolution of these efforts.  
• An exploration of likely philosophical, societal, ethical and religious 

questions and controversies posed by the prospect of an “artificial 

genesis”. 
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The Origins of the Concept of Using Computers to Simulate Living 
Systems and Evolution 
 

The modern quest for the understanding of possible 

mechanisms behind the origin of life, or in other words the 

transformation of nonliving matter into living matter, has been passed 

down to us from chemistry’s precursors, Middle Ages alchemists 

(O'Connor, 1994). The mathematician Rene Descartes wrote in the 

seventeenth century of the then prevalent theory of spontaneous 

generation that “it is certainly not surprising that so many animals, 

worms, and insects form spontaneously before our eyes in all 

putrefying substances” (Margulis and Sagan, 2000, p. 64). Charles 

Darwin challenged the assertion of spontaneous generation in his On 

the Origin of Species (Darwin, 1859) arguing that species evolved from 

previous generations through a process of natural selection. In a letter 

to botanist Joseph Hooker, Darwin (1871) contemplated a chemical 

origin for life: 

It is often said that all the conditions for the first 
production of a living organism are present, which could ever 
have been present. But if (and Oh! what a big if!) we could 
conceive in some warm little pond, with all sorts of ammonia and 
phosphoric salts, light, heat, electricity, etc., present, that a 
protein compound was chemically formed ready to undergo still 
more complex changes, at the present day such matter would 
be instantly devoured or absorbed, which would not have been 
the case before living creatures were formed. 
 

Work on the chemical origins of life progressed in the following 

decades through the early twentieth century work of Oparin (Oparin 

and Morgulis, 1938) and J.B.S. Haldane (Haldane, 1927) with 

hypotheses and experimentation regarding the conditions of the 

oceans and atmosphere, or what became popularly known as the 

“primal soup” of the early Earth. In 1953, chemists Stanley Miller and 

Harold Urey, reported their groundbreaking synthesis of amino acids 

within a chemical environment that simulated the estimated 

atmosphere on the early Earth (Miller, 1953). The Miller-Urey 

experiment caught the public imagination and sparked the quest for the 
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origins of life in the test tube, inspiring decades of work on the chemical 

origins of life. 

 

By the time of the Miller-Urey experiments, the quest was poised 

to move from the realm of speculative chemistry into the domain of 

digital experimentation with the arrival of the new medium of binary, 

electronic computation.  George Dyson, son of the renowned physicist 

Freeman Dyson, has written extensively about the origins of the 

modern digital computer and early origins of life research at the 

Institute for Advanced Study (IAS) in Princeton, New Jersey. We will 

next summarize Dyson’s recounting of this history from his book 

Darwin Among the Machines (Dyson, 1997). The author of this thesis 

also made a number of trips to the IAS during the conduct of his 

research which included two meetings with Freeman Dyson. 

 

Central to this new development was the great mathematician 

John von Neumann, who had been a professor at the IAS since 1933 

and had participated in such early computer projects as the Electronic 

Discrete Variable Automatic Computer (EDVAC) built for the U.S. Army 

by the University of Pennsylvania. Von Neumann had strong support 

for his work following World War II from the new director of the IAS, 

Robert Oppenheimer, who had left the Los Alamos Laboratory in New 

Mexico where he had been scientific director of the atomic bomb 

project. With Oppenheimer’s sponsorship (and carefully choreographed 

protection from the Board of Trustees of the Institute), von Neumann 

led a team of scientists and engineers to create what might be 

considered the progenitor of the modern digital computer (Dyson, 

1997, pp. 93-110). Simply called the IAS machine or, by those 

associated with the Institute, the Electronic Computer Project (ECP) 

machine, it was introduced to the world in mid -1952 (see Figure 1 and 

Figure 2). 
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Figure 1 John von Neumann and the electronic computer at the 
Institute for Advanced Study, Princeton, New Jersey (photo courtesy 
The Shelby White and Leon Levy Archives Center, Institute for 
Advanced Study). 
 

 
Figure 2 The building at the Institute for Advanced Study which housed 
the Electronic Computer Project (photo by the author). 
 

The first two substantial programs coded to run on the machine 

were computation in aid of thermonuclear testing for the Department of 

Energy and weather prediction for the US Army. In the spring and 

summer of 1953, however, mathematical biologist Nils Aall Barricelli 

visited the IAS to begin a new line of research. The ECP’s Monthly 

Progress Report for March, 1952, noted that:  

A series of numerical experiments are being made with 
the aim of verifying the possibility of an evolution similar to that 
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of living organisms taking place in an artificially created 
universe. (as cited in Dyson, 1997, p. 111) 
 

Barricelli proceeded to code what became known much later as 

an “artificial life” program onto punched cards and fed them into the 

ECP machine.  The author visited the IAS archives in the spring of 

2009 to view and study these materials first hand, including Barricelli’s 

original punched or “key” card deck (Figure 3). 

 

 

Figure 3 Punched card from the numerical symbio-organisms program 
for the IAS machine (photo by author). 
 

Calling it an “experiment in bionumeric evolution”, Barricelli was 

investigating the role of symbiosis in the origin of life and came to 

believe that his five kilobyte universe of “numerical symbio-organisms” 

exhibited the key criteria of a living, evolving system. Barricelli ran his 

program over several weeks, executing thousands of iterations of 

arrays of 512 numbers. He reported the results in a chapter of a major 

report on the ECP machine (Barricelli, 1953) which will be described 

next. 
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Figure 4 The author with the “Barricelli blueprints”, punched card 
outputs of the memory of the program imaged on paper (photo 
courtesy The Shelby White and Leon Levy Archives Center, Institute 
for Advanced Study). 

 

 
Figure 5 Close-up view of six of the Barricelli blueprints (photo by 
author). 
 

Barricelli himself described his “Barricelli blueprints” as “output 

cards, punched with the contents of half the memory, when abutted 

top-to-bottom, present five generations of the 512 locations, in proper 

array… reproduced photographically and further assembled” (p. II-63; 
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see also Figure 4). Figure 5 shows several such generations, each with 

512 locations. Barricelli coded his system to fit into the approximately 

five-kilobyte memory of the ECP machine. Barricelli wrote that “the 

code was written so that various mutation norms could be employed in 

selected regions of the universe… attention was paid to coding for 

maximum speed of operation, and for the convenient re-use of the 

output data as input after interrupted operation” (p. II-63). Barricelli’s 

norms are defined as reproduction and mutation rules for the numbers 

occupying the 512 locations in memory. In general, we can derive that 

he was executing a serial process of examining numbers each 

representing “organisms” and permitting them to change location, 

applying mutations to the numbers and dumping the entire “frame” of 

memory for examination and loading again to be restarted. Elsewhere 

in his report he described a key feature of any system intended to 

increase its organizational complexity (that is, the search for ever 

higher local maxima within a fitness landscape): “the evolution of an 

organism may for a long period of time stop in a relative maximum of 

fitness… but a change in the conditions of the universe, e.g. in the kind 

of concurrent organisms, may sooner or later level the maximum 

making further evolution possible” (p. II-87). 

 

George Dyson (p. 117) summarized Barricelli’s results as 

follows: 

Barricelli knew that "something more is needed to 
understand the formation of organs and properties with a 
complexity comparable to those of living organisms. No matter 
how many mutations occur, the numbers... will never become 
anything more complex than plain numbers."(Barricelli, 1962, p. 
73). Symbiogenesis--the forging of coalitions leading to higher 
levels of complexity--was the key to evolutionary success, but 
success in a closed, artificial universe has only fleeting meaning 
in our own. Translation into a more tangible phenotype (the 
interpretation or execution, whether by physical chemistry or 
other means, of the organism's genetic code) was required to 
establish a presence in our universe, if Barricelli's numerical 
symbioorganisms were to become more than laboratory 
curiosities, here one microsecond and gone the next. 
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Barricelli’s vision was profound, and provided a roadmap for 

future efforts in origin of life endeavors.  The design principles Barricelli 

employed included: 
1. a teleological goal to produce a system within which de novo 

emergence of complex phenomena could be observed; 

2. a computationally optimized simulation of a relatively small set of 

objects organized in discrete locations of a simple universe and 

able to interact with each other while affected by global 

parameters; 

3. the capacity for visual inspection and continued execution, when 

reloaded; 

4. the quest of ever higher local maxima of some predefined set of 

goals or observation criteria constituting what later came to be 

called an artificial fitness landscape; 

5. the capacity for the emergence of discrete “species” (types of 

object), but also the capacity for the system to devolve and lose 

such organization. 

 

We can see in Barricelli’s vision and in Dyson’s analysis a sense 

of both the conundrums and long-term promise of digital simulation in 

support of origin of life endeavours. In Barricelli’s digital world, simple 

digital universes with their simple physics produced simple results. 

Such a view would eventually give way to a more complex 

conceptualization, but Barricelli’s ideas influenced developments in the 

field for some sixty years. 

 

However compelling they may be to theorists or computer 

programmers, these worlds are of fleeting curiosity and of little utility to 

the study of life and its origins. Some means to achieve ever more 

complex virtual organisms and to test these creations in our universe 

(in physical chemistry or otherwise) are required to make this 

endeavour relevant to the broader quest for understanding living 

systems.  

 



 
 

 31

 
Figure 6 Barricelli’s original 1953 report on his Numerical 
Symbioorganisms project, along with the author’s design for the 
EvoGrid search tree function (photo by author). 

 

Barricelli’s original August 1953 report (Barricelli, 1953) pictured 

in Figure 6 is set side by side with the author’s original design for the 

EvoGrid, the prototype implemented for this research. The parallels 

and differences between these approaches will be described below. 

 

It was both inspiring and instructive to handle the materials of 

the first implementation of the long pursued dream of using computers 

to simulate living systems, especially systems that might express the 

properties of evolution. While Barricelli’s work ended decades ago, the 

design principles he established while striving to shoe-horn his life 

simulation into von Neumann’s first computer are still relevant today. 

For, despite advances in computing power and programming 

techniques we are still living with von Neumann’s fundamental 

computer architecture. This architecture consists of a few central 

processing units sequentially processing serial, branching instructions, 

and reading and writing to primary and secondary memory caches. The 

massive parallelism and other properties which permit Nature to 
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“compute” cannot yet be matched within our early twenty-first century 

digital universes. 

 

 
Figure 7 The author’s original sketch for the EvoGrid drawn in 
preparation meetings with Professor Freeman Dyson on the 11th and 
19th of March, 2009 at the Institute for Advanced Study in Princeton, 
NJ. 

 

The EvoGrid’s fundamental design and simulation criteria are 

shown in the sketch in Figure 7. This sketch was produced for a pair of 

meetings with Professor Freeman Dyson at the IAS. Dyson was a 
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contemporary of both von Neumann and Barricell but by his own 

admission and to his regret did not get involved in computers. Dyson 

had been trying to bring Biology into the Institute for some years and 

had himself made serious investigations into origin of life thinking, 

including his “double-origin” hypothesis spelled out in (Dyson, 1999, p. 

10). This hypothesis proposes that elements of a living system (amino 

acids, nucleotides, containers, metabolism, heredity mechanisms) 

might have arisen separately, replicated and developed without the 

exact precision derived from gene expression, and then been 

combined to create the first living systems. Chapter 4 of this thesis 

illustrates several chemical models along the lines of the double-origin 

hypothesis. Dyson also used the techniques of mathematically 

described “toy universes” in his thinking about the subject, which 

predisposed him to like the EvoGrid project as proposed. Dyson gave 

substantive input, summarized in Appendix B.2. The main point made 

by Dyson was that our simulations had to reflect the truly messy state 

of nature. One of his messier models for the prebiotic milieu is that of a 

large number of interacting molecules akin to “dirty water” contained in 

a “garbage-bag world” (p. 37). This figure is reproduced in Figure 39 in 

section 2.2 and forms the basis for the optimization used in this work 

 

Traveling back and forth across the lawn between the office of 

Freeman Dyson and the IAS archives to view the Barricelli materials 

the author was struck by the similarity of design choices which were 

made by Barricelli as he had already intuited for the EvoGrid. As we 

have listed previously and shall explore further in Chapter 2, those 

common design choices included highly optimized execution of sets or 

“frames” of objects (simulated molecules) in an inheritance (or 

generation) hierarchy with varying simulation parameters and driven by 

a search and re-execution designed to permit the seeking of higher 

fitness maxima. The design sketch produced for Dyson and shown in 

Figure 7 illustrates the concept behind these computing frames 

operating in a search-driven inheritance hierarchy. The major additions 

to the author’s 2009 design over Barricelli’s 1953 architecture were the 
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addition of fully automated search and restarting of simulations. In 

Barricelli’s day the search for interesting phenomena in the simulation 

was accomplished manually by viewing the optical imaging of punched 

cards, and restarting simulations required manual feeding of cards 

back into the computing machinery. By the year 2010 a grid of 

computers could be used to run automated observations and the 

scoring of frames could then be used to select for automatic 

continuation of their execution. Barricelli’s universe was made up of a 

two dimensional array of integers; the 2010 universe was also 

represented by numbers, but much more complexly structured to 

represent a three dimensional volume of virtual atoms.  

 

The Development of the Modern Field of Artificial Life 

 

Let us now continue our explorations of the historical 

underpinnings of the computational simulation of life. Later in the 

1950s, John von Neumann proposed concepts of self-reproducing 

automata in a work which was published posthumously (von Neumann 

and Burks, 1966). Inspired by this vision, in 1960 Wayne State 

University student researcher Fred Stahl implemented one of the first 

von Neumann inspired self-reproducing cellular automata (CA) 

systems on an IBM 650 mainframe, a direct successor to the ECP 

machine (Stahl, 1961). Stahl’s universe went beyond Barricelli’s in 

terms of complexity as it featured an implementation of Turing’s notion 

of a universal machine implemented for each of his simulated creatures 

using the computer’s instruction set (Turing, 1950, Turing, 1937). 

Stahl’s universe featured analogs for food and competing creatures 

capable of reproducing and mutation. This was followed in 1970 when 

Scientific American columnist Martin Gardner popularized British 

mathematician John Conway’s “Game of Life” (Gardner, 1970) and 

brought the concept of cellular automata (CA) to the public’s 

imagination. In his work, Conway was seeking to implement a 

simplified version of von Neumann’s self-reproducing automata. The 

implementation of CAs was quite possibly the first true “experimental” 
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environment for complex artificial worlds. CAs consist of arrays of cells 

in a set of two or more discrete states. State changes of cells depend 

on a set of coded rules that garner information from the state of 

neighboring cells. Decades of studying behavior in larger CA systems 

on faster computers has lead some, notably researcher and 

businessman Stephen Wolfram (Wolfram, 2002), to make some very 

large claims: that CA’s are the fundamental operating units of the 

universe. 

 

By the 1980s John von Neumann’s original design for the 

electronic computer had come to dominate the computing world and 

began appearing on desktops as microcomputers. These tiny 

machines allowed intellectual successors to Barricelli such as 

researcher Chris Langton to work late into the night and code their own 

renditions of life as it could be while coining a term for a new field: 

Artificial Life (Langton, 1986, Levy, 1993). Artificial Life, sometimes 

abbreviated as AL or Alife, has a close cousin, artificial intelligence (AI) 

which is aimed at representing conscious thought. To avoid confusion, 

Alife is focused on a bottom-up approaches, hoping to simulate living 

systems at their simplest (Langton et al., 1992).  

 

 
Figure 8 Karl Sims' evolving virtual creatures (image courtesy Karl 
Sims) 
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Karl Sims, for example, took this “bottom up” approach to new 

levels, using visual simulations to illustrate simulated evolution in a 

simple virtual universe with physics. His highly innovative work in the 

early 1990s combined the simulation of a genotype (a coding 

generating a directed graph) with the expression of a phenotype 

(groups of three dimensional hinged blocks) which was then subjected 

to mutation and selection pressures through competition for resources 

(Sims, 1991). Sims’ work was also one of the first Alife systems 

designed to run on a dedicated supercomputer, the Connection 

Machine, which supported thousands of individual von Neumann-type 

processing units.  

 

 
Figure 9 The Almond interface to Tierra (image courtesy Tom Ray) 
 

During the same time period, work on the computer simulation 

Tierra concentrated solely on genotypic competition and evolution and 

was a direct descendent of the work of Barricelli (Ray, 1991). Tierra 

represented its universe as strings of data constantly seeking 

computing resources and available space to make copies (Figure 9). 

Random mutations were possible during copying and Tierra showed a 

number of fascinating emergent phenomena including the spontaneous 

rise of parasitism, which Barricelli also hinted at seeing in his first and 

subsequent experiments. Inspired by the increasing prevalence of 
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another form of Alife, computer viruses, Tierra was adapted to run on 

networks and showed how a topology of competing “islands” of 

computing energy could shape the dynamics of populations (Ray, 

1998). 

 

In the 1990s there was great anticipation that increasing 

computing power would soon support simulated abstract ecosystems 

teeming with binary activity, which biologists would come to recognize 

as true living systems. However, it is the opinion of the author that by 

the turn of the last century Alife development had stalled. The strongest 

indication of this was the tendency for each Alife environment to fill up 

with a set of interesting phenomena but then show no ability to extend 

to a set of more complex phenomena. In other words, the Alife 

environments failed to show development through multiple levels of 

complexity sometimes referred to as “open ended” evolution.  

 

This opinion was born out by a survey of the research 

community held at the Seventh International Conference on Artificial 

Life in the summer of 2000. The survey addressed issues including 

artificial life’s main successes, failures, open scientific questions, and 

strategies for the future (Rasmussen et al., 2003a). When the question 

“what are artificial life’s most significant failures?” was asked, the 

responses were, in order of priority:  

…too little theoretical or experimental grounding for the 
work done (“no rigor”), no coherent agreement on which 
scientific problems the community should address (“no 
direction”), and insufficient connection to other scientific fields 
(“unrelated”) (p. 218).  
 

When polled on the key scientific issues to address, 

respondents replied that open-ended evolution was central. Next in 

importance was developing theory to supplant the proliferation of ad 

hoc work. Finally, respondents wanted a deeper understanding of life, 

either through devising a better definition or by creating life, and better 

understanding of dynamical hierarchies (p. 221). 
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During this time, the author held four conferences, the Digital 

Biota series I-IV (Damer, 1997-2001), in which Alife systems were 

presented by many of the leading practitioners of the field. By the 

fourth conference in 2001 it was clear that this lack of progress was a 

major stumbling block of non-trivial proportions. While there were many 

proposals for moving beyond this obstacle (Campbell, 2003) the author 

believed that the source of the problem was that the virtual worlds 

driving Alife experiments were too poor to support open ended 

emergence. Another way of saying this is that the physics used to 

compute the virtual reality of these worlds was too simplistic. We do 

know, however, that the real-world physics of chemistry is able to 

support the open-ended complexification of life. The natural question 

one might then pose is: must we create virtual environments modeling 

living systems closer to the reality of physical chemistry? Taking on this 

question could address many of the above survey conclusions of 

Rasmussen et al. by aligning Alife with another scientific field:  

biochemistry. Next, rigour can be introduced by taking on the challenge 

of chemical simulation. Finally, a specific scientific goal can be 

selected, for example, the observation of a system exhibiting open-

ended growth of complexity. In this way, the system proposed in this 

thesis could provide one avenue around the stumbling block currently 

faced by the Alife field. 

 
A New Synthesis: Computational Abiogenesis 
 

In the 2000s interest was again growing in creating chemically-

based or in vitro experiments supporting origins of life endeavors. One 

class of experiments undertaken during this time sought to observe the 

formation of protocells (Rasmussen et al., 2008). Protocells are loosely 

defined as chemical structures exhibiting at least some properties of a 

living cellular system. In parallel to this development in the laboratory, 

massively distributed peer-to-peer computation, large scale centralized 

grids, and special purpose computational chemistry computing 
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hardware were being put into operation. These computing 

environments were capable of hosting viable realistic simulations of 

very small volumes of interacting molecules over short but biologically 

significant time scales (Shaw, 2009). At the start of the second decade 

of this century, a true synthesis of in silico simulation as a tool to 

design and predict the outcomes of in vitro experimentation seems to 

beckon to us from just over the horizon.  

 

This synthesis holds the promise of new tools for chemistry akin 

to those delivered by computer aided design (CAD) and enjoyed by 

other fields such as product manufacturing, architecture, and in the 

case of the experience of the author, the design of spacecraft and 

missions (Damer et al., 2006). Numerous discrete element (sometimes 

called “quantum” or “particle”) simulators have been implemented in 

recent years, many taking advantage of common 3D game hardware 

known as graphics processing units (GPUs)(Nvidia, 2011). Many of 

these GPUs feature hardware supporting particle simulation software 

for the generation special effects. In the past decade the author 

engaged in related simulation work with teams at NASA and the 

Colorado School of Mines surrounding the simulation of robotics and 

granular materials for computer aided design in Lunar exploration 

(Taylor et al., 2005). Today, chemists are beginning to be able to use 

GPUs and other tools of computation to simulate particle-oriented 

frameworks involving individual chemical reactions and larger 

molecular structures such as proteins that give a measure of prediction 

of outcomes in chemical in vitro experiments (Phillips et al., 2005). 

 

Such a synthesis also brings up a new and tantalizing 

possibility:  

Could we actually one day digitally simulate a complete 
plausible step-by-step chemical scenario for an origin of life on 
Earth? And if we could carry out such a simulation while 
remaining faithful to the chemistry, could we then reproduce this 
particular pathway to life from non-life on the chemistry 
workbench? 
 



 
 

 40

The computing part of this challenge was perhaps most 

definitively issued by Richard Gordon in the book Divine Action and 

Natural Selection: Questions of Science and Faith in Biological 

Evolution (Gordon, 2008). In his chapter titled “Hoyle’s Tornado Origin 

of Artificial Life: A Programming Challenge”, Gordon challenges the 

artificial life community to develop a computational environment to 

simulate an origin of artificial life from artificial non-life (pp. 354-367):  

I would like to suggest that artificial life (Alife) enthusiasts 
take up Fred Hoyle’s challenge (Hoyle, 1984), that in a way they 
simulate a tornado going through a junkyard of parts, and come 
up with something we would all agree is alive, in the Alife sense, 
from components that are not alive in the Alife sense... 
 

This author’s response to Gordon’s challenge was detailed in 

another chapter “The God Detector” (Damer, 2008, pp. 66-85) in the 

same volume (and also included in full in Appendix A.3 of this thesis): 

What I am proposing is to engage all of the best 
programmers, artists and philosophers of our generation to 
create a gigantic network of software and computers, working to 
create a sort of “Evolution Grid” or “EvoGrid”. This EvoGrid 
would start out as God the Mechanic (like Karl Sims’ creatures) 
in which we build the simulation, set the initial conditions and 
then let the artificial ecosystem go from there. 
 

As described previously we adopt the term cyberbiogenesis to 

capture the synthesis of the two approaches: computational and 

chemical abiogenesis combining digital simulation with atomic 

realization. This word is a cousin of Mereschkowsky’s term 

symbiogenesis (Mereschcowsky, 1909) which Margulis (Margulis, 

1997) argues was a primary driver of evolution. Symbiogenesis holds 

that living systems, such as cells for example, evolve through emerging 

symbiotic relationships of parts that once were free standing 

organisms. Individual organelles such as the mitochondrion ceased 

being a separate organism and instead became the energy system for 

most eukaryotic cells. Cyberbiogenesis is related in that the computer, 

or cyber, simulation of emergent forms would become the building 

blocks of chemical experimentation. As multiple stages in an origin of 

life model are simulated and replicated chemically, there would emerge 
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a symbiotic relationship between the discovery system simulation and 

the emerging chemical model. 

 

The scope of constructing an end-to-end cyberbiogenesis 

system would likely be much more challenging than the recently 

completed project which sequenced the Human genome (Watson and 

Cook-Deegan, 1991) but is possibly realizable within this century. The 

chemical fabrication aspect of the cyberbiogenesis challenge is 

perhaps best captured by the field of synthetic biology. The recent 

announcement by Craig Venter of the in vitro substitution of a 

synthetically created genome into a living cell (Venter et al., 2001) 

seems to suggest that the fabrication of significant additional parts of 

living cells might also be possible. To compute an in silico origin of life 

faithful enough to physical laws of chemistry to be reproducible in vitro 

is perhaps one of the most audacious applications of technology in the 

history of human civilization. 

 

This thesis will focus on the computational aspect of 

cyberbiogenesis, first explored through some thought experiments, and 

then through the process of design and implementation of an early 

computer prototype simulation. We will conclude by illuminating a 

possible road map for future efforts and considering some of the many 

scientific and technological open questions as well as societal issues 

that might emerge around such an effort. We hope that this thesis will 

lend some shape to cyberbiogenesis as a possible grand challenge for 

the coming century for those who might choose to continue the 

endeavour.  

 
A Thought Experiment 

 

In mid 2008 the author engaged in a Gedankenexperiment 

(thought experiment), drew storyboards (Figure 10) and requested a 

collaborator to produce a short animated movie (Damer et al., 2008) 

designed to illustrate the concept of cyberbiogenesis. 



 
 

 42

 

 
Figure 10 The author’s original sketches of the thought experiment 
 

Figure 11 through Figure 20 below depict and describe scenes from 

the film which provides a visual cartoon of the thought experiment 

which imagines a completely realized cyberbiogenesis system. 

 

 
Figure 11 The conceptual cyberbiogenesis setup: on the right is the in 
silico molecular simulation space underlain and powered by numerous 
microprocessors; on the left is the molecular assembler and in vitro test 
beaker 
 



 
 

 43

 
Figure 12 The simulation space is depicted rendering the physics of an 
aqueous chemical environment 
 
 

 
Figure 13 The formation of virtual molecules and some self 
organization occurs in the simulation space 
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Figure 14 The formation of a vesicle is observed with the accidental 
capture of some other molecular machinery (on the lower left center) 
 
 

 
Figure 15 The accidental virtual symbiotic entity is capable of a 
sufficient ensemble of lifelike behaviors including 
compartmentalization, metabolism and replication with a mechanism 
for genetic heredity and so Darwinian natural selection has led to its 
growing sophistication 
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Figure 16 A sufficiently evolved entity is selected for digital 
decomposition and transmission from the in silico simulation to the 
molecular assembler 
 
 
 

 
Figure 17 The hypothetical molecular assembler carries out a process 
akin to 3D printing and combines basic chemical elements to 
synthesize a molecular rendition of the virtual entity 
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Figure 18 The fabricated entity emerges to drop into the beaker of 
formulated chemicals matching the environment in the original digital 
simulation 
 
 

 
Figure 19 Within the in vitro environment, the molecular version of the 
entity starts to function as a new form of “living” entity 
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Figure 20 The entities advance further and begin to reproduce in their 
new environment, completing the cyberbiogenesis cycle 
 

How realistic and realisable is this thought experiment? 

According to Nobel laureate Richard E. Smalley a “black box” nano-

scale molecular assembler is nowhere near to becoming a reality 

(Baum, 2003). However recent progress in function representation 

(FRep) of 3D virtual objects (Pasko et al., 2008) paired with digital 

materialization made possible by universal desktop fabrication 

(Vilbrandt et al., 2008) shows promise in this direction. In either case, 

near term progress towards this goal still needs to be made in the 

domain of computational simulation. Given the scope, time and 

resources available at the beginning of this research project, it was 

thought that a reasonable goal for the work might be to produce a 

prototype that would reach the step depicted in Figure 13 above: a few 

simple molecules forming from an atomistic soup. 

 
Research Methodologies and Methods to be Employed 

 

Prior to launching into main discourse of the thesis it is worth 

clarifying the methods and methodology that are employed. In the map 

of the research topic we use the ontological assumption that it is 

possible to know the mechanisms of life arising from non-life. The 

epistemological framework for this work is based on a positivist 

approach utilizing a hypothetico-deductive method (Popper, 1959) to 
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create a chemical model in software and then test it, observing from an 

objective distance using a methodology of controlled simulations and 

quantitative analysis (specifically pattern matching through time). 

 

  
Figure 21 A visual representation of A.D. de Groot's empirical cycle 
 

The Hypothetico-Deductive scheme traces its origins from 

natural philosophy and is effectively depicted in Figure 21 by A.D. de 

Groot’s empirical cycle (de Groot, 1969). In this reiterative cycle we 

start with observations followed by induction (inferring these 

observations within the concept of an emerging theory), leading directly 

to deduction (in which the researcher proposes a hypothesis), followed 

by testing and evaluation (success or failure of the hypothesis) and a 

re-visiting of the original observed phenomena (hopefully with a new 

light of understanding). 

 

This research project utilizes quantitative rather than qualitative 

research methods. Quantitative methods will search for causal links 

between phenomena, relationships between independent and 

dependent variables. A primary goal is to produce results which are 

generalize-able and reliable, i.e.: its results should be independently 

reproducible with a guarantee that a significant bias did not enter into 

the results. 

 

Bias could be introduced due to differential sampling of the 

running simulation. Sampling would change the nature of computation 
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in the simulation, and regular sampling might create a pattern of 

behaviour that is outside the allowable “physics” of the space. In digital 

simulations sampling is often accomplished through bulk scanning of 

large datasets for pattern matching throughout the population of 

objects. In order to reduce the chance of bias, controlled sampling of 

periodic offline snapshots or “dumps” from the live simulation can be 

done, such that the simulation computing space is not engaged directly 

by the analyzers. This approach should also permit independent testing 

by collaborating institutions and support the comparison of duplicated 

simulation spaces. The approach will be discussed in more depth in 

chapter 2. 

 

Numerical arrays, two dimensional graphs, tree representations 

and three dimensional visualizations will be used to present results 

from the directed searches. Variables might include relative patterns 

through time (patterns of reactions), behaviours (movement of a 

consistent set of objects from one location to another), or the creation 

or destruction of objects (population growth or decline). Independent 

variables will include time or spatial coordinates; dependent variables 

will include the density and velocity of objects (in this case simulated 

molecules). One particularly interesting dependent variable might be 

the level of energy (collective motion representing heat) in the system 

versus observed emergent phenomena. There might, for example, be 

an inverse relationship between heat and the formation of molecular 

bonds, i.e. after some point at higher temperatures fewer bonds might 

form.  Management of heat within molecular dynamics simulations 

would then be identified as an example of the effect of a global 

property. 

 

The project employs statistical analysis methods and packages 

analyzing test runs using computing grids inspired by UC Berkeley’s 

BOINC network (Anderson, 2004). The project hosts a collaborative 

web site at www.evogrid.org employing a Wiki used for the research 

journal, documentation, access to the simulation code and 
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executables, data and analysis, research findings, and advisory and 

supervisory commentary. A key background resource to this project is 

the Biota Podcast, an online audio discussion forum hosted by Tom 

Barbalet  (Barbalet, 2008) which during the period 2006-2010 served 

as an important public sounding board for the development of these 

ideas. The full listing of Biota Podcast episodes relevant to this 

research is provided in Appendix B.3. Another background resource for 

this endeavour is a personal recollection of the origins of the EvoGrid 

provided by the author in Appendix A.1. Also of interest is a September 

2009 article on the project which appeared in the New York Times 

(Markoff, 2009) reproduced in Appendix A.4. These materials are good 

background sources informing the next section. 

 

Map of Personal Research Background 
 

Figure 22 maps the research and development background of 

the author and is useful in understanding the origins of the research 

concept and proposed goals, methods and methodologies: 

1. Work on various computer software systems for research and 

commercial applications. 

2. A practice in the graphic arts informed visualization of the 

problem, and the design and functioning of the architecture. 

3. Development of graphical user interfaces (Damer, 2001) when 

they were transitioning from research workstations at Xerox to the 

personal computer. 

4. Years of study of biological systems including hosting the Digital 

Biota conference series (Damer, 1995). 

5. A practice of virtual worlds research and development in the 

1990s (Damer, 1997, Damer, 1996, Damer et al., 2000, Damer, 

2003b, Damer, 2010). 

6. The Nerves platform (Damer and Furmanski, 2005) built by the 

author and designed for biological simulation (for more 

background see the Nerve Garden book chapter in Appendix 

A.2). 
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7. The Digital Spaces 3D virtual worlds simulation platform (Damer 

et al., 2006) funded by NASA and providing prior experience in 

building simulation frameworks (Farkin and Damer, 2005). 

8. The hypothesis for the research work developed in parallel and 

together with the tools. 

9. The combined research experience combined to form the basis 

for the building of the prototype EvoGrid (Damer et al., 2011b, 

Damer et al., 2010, Markoff, 2009). 

10. Simulation and networking experience informed the testing of the 

hypothesis. 

 

 
Figure 22 Map of research background 

1. Computer 
Software 

(1981-present) 

2. Graphic 
arts 

(1975-80) 

3. User 
Interfaces 
(1987-94) 

5. Virtual 
Worlds & 
Simulation 

(1994-
present)

4. Biological 
Systems  

(1980-present) 

8. Hypothesis: 
Technological 
Autogenesis 
(2003-08)

6. Nerves 
Finite State 
Machine 
(1994-95) 

7. Digital 
Spaces 
NASA 3D 
Simulator 
(2000-10) 

9. Build EvoGrid (2009-11) 

10. Test 
Hypothesis 
(2010-11)
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Thesis Roadmap and Contributions to Knowledge 
 

The following four chapters of the thesis are organized to 

present a body of literature, analysis and conclusions which constitute 

the following contributions to knowledge: 

 

Chapter 1: Framing the Challenge of Computational Origins of 

Life Endeavours – where we will state the hypothesis of this work and 

provide a literature review of the centrally cognate fields that inform 

cyberbiogenesis and computational origins of life endeavours. We will 

conclude with a contribution to knowledge by illustrating a unique 

mapping among  these fields. 

 

Chapter 2: Design for the EvoGrid Simulation Framework and 

Optimizations – where we engage in a deductive approach to arrive at 

a viable computing architecture, optimization techniques and good 

practices for computational origin of life simulations and conclude with 

the contribution to knowledge of one design for the EvoGrid. 

 

Chapter 3: The EvoGrid Prototypes: Implementation, Testing 

and Analysis – where we describe the construction of two versions of 

the prototype EvoGrid framework and illustrate through testing the 

computational cost savings and gains in emergent complexity that 

inform applications of this technique. The contribution to knowledge will 

be to address our hypothesis and determine whether the implemented 

framework and optimizations perform as predicted and whether they 

could be beneficial to future computational origins of life endeavours. 
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Chapter 4: Limitations, Roadmap, Open Questions and Broader 

Considerations for Endeavours Seeking to Compute Life’s Origins – 

where we present conclusions based on our testing of the hypothesis 

to provide another contribution to knowledge in the form of a technical 

roadmap and a series of open questions for emerging endeavours 

involved in computing life’s origins. We also list and describe scientific, 

philosophical, religious, and ethical conundrums posed by this line of 

research. 
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Chapter 1: Framing of the Challenge of Computational 
Origins of Life Endeavours 
 
Introduction 
 

In their seminal paper Open Problems in Artificial Life (Bedau et 

al., 2000) the authors set a challenge in the second open problem to 

“achieve the transition to life in an artificial chemistry in silico” (p. 364) 

while also identifying that “[b]etter algorithms and understanding may 

well accelerate progress… [and] combinations of… simulations… 

would be more powerful than any single simulation approach” (pp. 367-

68). These authors also point out that while the digital medium is very 

different from molecular biology, it “has considerable scope to vary the 

type of ‘physics’ underlying the evolutionary process” and that this 

would permit us to “unlock the full potential of evolution in digital media” 

(p. 369).  

 

As we concluded in the previous section, a fruitful way forward 

for the Alife and origins of life fields might be to adopt the goal of 

building a class of simulations at some level of chemical reality. This 

branch of simulation, which we term cyberbiogenesis, would seek to 

study complex, emergent phenomena not in abstract universes as 

epitomized by the work of Barricelli, Stahl, Conway, Langton, Ray, or 

Sims, but with universes modeled as closely as possible on physical 

chemistry. Once armed with the tools of chemical simulation, 

experiments could then be set up to model scenarios the might lead to 

living molecular structures arising from their non-living forebears. This 

could then be considered the technical basis for the emerging 

simulation field termed: Computational Origins of Life (COoL) 

endeavours (Shenhav and Lancet, 2004). 

 

There already exists a sub-branch of simulation science called 

artificial chemistries (AChems). (Dittrich et al., 2001) defined an 

AChem as “a triple (S,R,A) where S is the set of all possible molecules, 

R is a set of collision rules and A is an algorithm describing the domain 
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and how the rules are applied to the molecules inside (the physics).” 

Current state-of-the-art AChems implement solutions from techniques 

employing abstract cellular automata to the simulation of chemistry at 

the quantum level. Recently there has been a rapid growth in projects 

utilizing the intermediate technique of molecular dynamics (MD) 

utilizing large, centralized, general-purpose computer clusters or 

purpose-built hardware such as Anton, an MD supercomputer (Shaw 

and Dror, 2008). Simulating benchmark experiments comprising 

thousands of atoms on a commodity cluster produces a number of 

nanoseconds of real-time equivalent chemistry per day (Bowers et al., 

2006). Optimized software running on dedicated systems like Anton 

can deliver milliseconds of real-time equivalent chemical behavior for 

these same benchmarks in just a few weeks of computation (Shaw, 

2009), a full two full orders of magnitudes of improved performance. 

Computational investigation into early stages of the origin of life will 

involve simulating millions or billions of atoms in supramolecular 

complexes over biologically significant time frames of seconds, 

minutes, hours or even days. However, there is no understanding of 

how long the transition from non-living to living molecular systems to 

life took, so any time estimates are pure speculation. 

 

To meet these substantial challenges, proposals to unify efforts 

into larger COoL endeavours have been brought forth in recent years. 

In (Shenhav and Lancet, 2004) the authors proposed utilizing the 

Graded Autocatalysis Replication Domain (GARD) statistical chemistry 

framework (Segre and Lancet, 1999). These authors have developed a 

hybrid scheme merging MD with stochastic chemistry. In GARD many 

short MD computations would be conducted to compute rate 

parameters or constraints for subsequent stochastic simulations. Thus, 

a federation of simulations and services was conceived which would 

also involve interplay with in vitro experiments. It is this vision for 

unifying efforts in COoL that has inspired this work in which we 

propose a framework for distributing and searching a large number of 

small chemistry simulation experiments. 
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As stated by Shenhav and Lancet, “the prebiotic milieu could 

best be characterized by a dense network of weak interactions among 

relatively small molecules” (p. 182). Simulating a soup of millions of 

atoms represents a scale of complexity beyond even the ambitious 

targets set by the builders of Anton. While simulating an entire 

plausible pathway to life in silico seems like a journey of a thousand 

miles, the first few steps can still be undertaken with some confidence. 

Innovations in distributed simulation architectures supporting AChems 

and employment of optimization techniques may be of value to any 

COoL endeavour and are the focus of this thesis. We posit that 

techniques employed in other fields of computer science, including 

distributed computing, search, branching and inheritance over volumes 

of simulation data, hill-climbing, and backtracking can be applied to the 

simulation of chemistries and produce significant computing savings 

and experimental flexibility. We believe that such a marriage of 

methods can yield valuable tools to tackle challenging problems in the 

science of life’s origins, particularly in exploring emergent phenomena. 

More on why we believe that these are the approaches that should be 

considered will be presented in this chapter and in Chapter 2 of this 

thesis. 
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1.1 Hypothesis 
 

With the above historical and contextual framing in place, we are 

now ready to state the hypothesis engaged by this work: 

 

Hypothesis 
Distributed processing and global optimization employing 

search coupled with stochastic hill climbing can produce 
significant performance improvements in the generation of 
emergent phenomena within small volume, short time frame 
molecular dynamics simulations over non-optimized solutions. 

 

Benefits to Science 

A method and platform for optimizing computation to 
select for pathways leading to de novo emergent structures and 
processes in simulated chemistry could benefit future systems 
supporting cyberbiogenesis computational origins of life 
endeavours. 

 

To test this hypothesis, a prototype system will be designed, 

implemented and run through a series of trials with control simulations 

in place. The above hypothesis can be falsified or validated within the 

context of such an experimental implementation by comparing the 

execution of the simulations with and without employing the 

optimization techniques. The strengths of the resulting system will be 

enumerated alongside the limitations of the approach and an indication 

of pathways for improvement. The lessons learned can then be 

enumerated along with a map of considerations for any future project to 

engage in serious simulations supporting investigations of life’s origins. 

With the hypothesis stated, the balance of this chapter will consist of a 

literature review that will inform a design exercise for the prototype, its 

initial implementation, testing, and the analysis of results which allow 

us to test our hypothesis and suggest a road map for future efforts. 

 
1.2 Literature Review of Cognate Fields 

 

The literature on the “origin of life” is vast, with over eight 

hundred books having this term in their titles (Damer, 2011). Thus the 
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literature review must necessarily focus tightly on a few subject areas 

relevant to the hypothesis. We therefore set the following end goal: 

explore and draw from the cognate fields those insights that inform the 

design of computational systems which could take up the mantle of MD 

simulations in which emergent phenomena might be observed. It is a 

system supporting emergent phenomena that would form the basis for 

later endeavours attempting to deal with the challenges of simulating 

an origin of life. 

 

To meet the above goal, this thesis draws together three primary 

cognate fields in the following order of priority of treatment and 

interrelationship: 
1. Complexity Systems Science which yields guidance in the 

implementation of techniques to optimize for the emergence of 

phenomena within artificial chemistry simulations; 

2. The Prior Art and Current Practices of the Computational 

Simulation of Chemistry ranging from abstract universes to the 

high fidelity physics of molecular dynamics; 

3. Past and Current Approaches to Parallel and Distributed 

Simulations of Artificial Chemistries and Molecular Dynamics 

which inform topological design considerations of optimizations 

within simulation networks which are the tools proposed for use in 

the testing of this hypothesis. 

 
1.2.1 Complexity Systems Science 

 

It has been a goal of the young field of complexity systems 

research to apply itself to real world problems, but also to develop a 

comprehensive mathematical model that would explain such 

phenomena as self-organization. Melanie Mitchell writes in her book 

Complexity, a Guided Tour (Mitchell, 2009): 

In my view complex systems science is branching off in 
two separate directions. Along one branch, ideas and tools from 
complexity research will be refined and applied in an 
increasingly wide variety of specific areas… physics, biology, 
epidemiology, sociology, political science, and computer 
science, among others... The second branch, more 
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controversial, is to view all of these fields from a higher level, so 
as to pursue explanatory and predictive mathematical theories 
that make commonalities among complex systems more 
rigorous, and that can describe and predict emergent 
phenomena (p. 301). 
 

It may well be that complex systems realized through computer 

simulation lie in between Mitchell’s two branches, applying some 

mathematical constructions and theories but seeking correspondence 

with real phenomena. Seeking emergent phenomena within statistically 

simulated chemical systems might well qualify as one of these in-

between systems. Mitchell and others suggest that for complexity 

systems science a base of theory might not be up to the task of 

completely prescribing emergent complexity and self-organization. The 

simulation of chemistries as proposed in our hypothesis puts this effort 

solidly in the realm of complex systems. This section will examine the 

current state of complexity science through the thoughts of three 

complexity theorists and its bearing on the goal of this thesis.  

 

Tamas Vicsek 

 

Hungarian biophysicist Tamas Vicsek (Vicsek, 2002) wrote an 

essay in Nature titled “Complexity: The Bigger Picture” in which he 

observed (p. 131): 

In the past, mankind has learned to understand reality 
through simplification and analysis. Some important simple 
systems are successful idealizations or primitive models of 
particular real situations, for example, a perfect sphere rolling 
down on an absolutely smooth slope in vacuum. This is the 
world of Newtonian mechanics, and involves ignoring a huge 
number of simultaneously acting other factors. Although it might 
sometimes not matter if details such as the billions of atoms 
dancing inside the sphere's material are ignored, in other cases 
reductionism may lead to incorrect conclusions. In complex 
systems, we accept that processes occurring simultaneously on 
different scales or levels matter, and the intricate behaviour of 
the whole system depends on its units in a non-trivial way. Here, 
the description of the behaviour of the whole system requires a 
qualitatively new theory, because the laws describing its 
behaviour are qualitatively different from those describing its 
units. 
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Vicsek has therefore concluded that complex systems require a 

new theory, but he also goes on to suggest the following:  

What we are witnessing in this context is a change of 
paradigm in attempts to understand our world as we realize that 
the laws of the whole cannot be deduced by digging deeper into 
the details. In a way, this change has been invoked by 
development of instruments. Traditionally, improved 
microscopes or bigger telescopes are built to understand better 
particular problems. But computers have allowed new ways of 
learning. By directly modelling a system made of many units, 
one can observe, manipulate and understand the behaviour of 
the whole system much better than before, as in networks of 
model neurons and virtual auctions by intelligent agents, for 
example. In this sense, a computer is a tool improving not our 
sight (as in the microscope or telescope), but our insight into 
mechanisms within a complex system. Further, use of 
computers to store, generate and analyse huge databases 
[allows us to discover] fingerprints of systems that people 
otherwise could not comprehend.   
 

Therefore, in the absence of the qualitatively new theory, Vicsek 

directs that a meaningful next step in the field of complexity studies is 

to develop digital modeling and simulation of complex systems from 

which this theory might one day emerge. A key underpinning for the 

effort undertaken in this thesis is that computers can “store, generate 

and analyse huge databases” that “people otherwise could not 

comprehend”. This new capability that is the generation and automated 

analysis of large datasets representing models of complex systems is 

one potential future source of a full theory of self-organization within 

complex systems science. Despite this promise the computational cost 

of simulating most systems in nature puts them outside of the reach of 

our computational machinery despite sixty years of solid progress. 

Therefore we suggest that to emulate complex phenomena in nature 

we must start by simulating very small natural systems. 

 

Anand Rangarajan 

 

During the process of designing and executing the first version 

of the EvoGrid, a meeting took place with University of Central Florida 
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at Gainesville complexity researcher Professor Anand Rangarajan 

(Rangarajan and Damer, 2010). In the paraphrased transcription of a 

personal communication during this meeting, Rangarajan notes the 

following: 

For a large scale goal, for example, the formation of lipid 
molecules, the way you are approaching it is hill climbing on a 
fitness landscape. Engaging in stochastic hill climbing ostensibly 
in search of a particular goal in which you are going to truncate 
paths is a type of teleology which encourages self-organizing 
phenomena. By teleology I mean that you have to have some 
sense of the larger goal you want to reach and you are trying to 
see along the way if interesting things are happening. This is not 
how you would expect evolution would work. In your design you 
are also doing back tracking and branching. Branch and bound 
techniques for optimization discovered many years ago could 
bound problems because of mathematical knowledge of when a 
branching was no longer necessary. You cannot do this I 
suspect because your fitness landscape and optimization 
problem is probably too complicated. So my suspicion is you will 
be doing a type of simulated annealing or Markov chain Monte 
Carlo type of stochastic hill climbing where you have many 
paths that climb up the mountain but your objective function 
itself might also be changing underneath you. Perhaps some 
global parameters will need to be tuned, also from a teleological 
sense. What I then suspect is that you are going to get a set of 
unique paths that climb up this mountain. And along the way you 
are trying to look for emergent phenomena.  

 

Rangarajan has pointed out a whole range of considerations 

about building digital systems to explore complex phenomena. The first 

is that the exercise of building an “exploration” system such as we are 

considering is in part a teleological exercise, or one involving an end 

purpose, from the Greek τέλος, telos, root: τελε- (Dictionary, 2011, 

Meriam-Webster, 2011). The scientific use of the term teleology is that 

we are building a system that we hope aids behavior to tend towards 

certain end conditions. There is a subtle balance to be achieved in the 

creation of any “artificial” universe. A researcher wants to be able to 

observe complex phenomena so sets up his or her universe to 

encourage the emergence of those phenomena. However, if 

proscriptive code is built to guide the universe on a deterministic 

pathway to that behavior then nothing can be learned about possible 



 
 

 63

new, emergent phenomena. The design of systems like the EvoGrid is 

therefore an exercise employing a certain amount of influence to 

achieve a non-trivial amount of emergence. 

 

Another point made is that the computing space, which for 

simulating chemistry would consist of thousands of objects rapidly 

interacting, is a very large fitness landscape. In other words, the 

number of pathways to what would be considered “maxima” or “optima” 

is very large. So if the formation of a particular molecule from this 

virtual soup takes tens of thousands of chance interactions, there is no 

way to mathematically model or predict when the particular interaction 

that forms the molecule will actually occur. There would also be no way 

to predict what configurations of whole populations or types (“species”) 

of molecules might occur, and when they might arise. Thus, such 

systems are unbounded in mathematical terms.  

 

Rangarajan goes on to suggest that with the above constraints, 

one approach would be to employ hill-climbing using some kind of 

random process behind the choice of paths, such as a Monte Carlo 

method. He asks whether or not the underlying fitness landscape is 

also changing. In a simplistic chemical system where atoms form into 

molecules, contributing or removing atoms, breaking bonds or 

adjusting heat within the system, this landscape would in fact be 

changing. 

 

In a subsequent conversation Rangarajan mentioned the work of 

(De Bonet et al., 1997) on the MIMIC system. MIMIC showed promise 

in the ability to correlate, or cluster pathways that find their way to 

maxima. Rangarajan suggested using this kind of method although we 

considered that it may be beyond the scope of this work. Rangarajan 

also brought up theoretical concepts from Seth Lloyd and others 

(Lloyd, 2006). He suggests bearing in mind Lloyd’s concepts of logical 

depth wherein the shortest (most compressed) program that can 

generate a phenomenon is sought. A long term goal of systems like the 
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EvoGrid would be to provide an experimental framework allowing these 

generative programs to be divined from the data. Rangarajan 

concludes with encouraging remarks echoing Vicsek. He calls for a 

move away from abstract models described by statistical mechanics 

and toward an experimental framework: 

We know that there is this world of abstract statistical 
mechanics but we need to build a computer architecture that is 
sustainable, that can run for ten years, that can use off the shelf 
components and provide a true experimental framework. 

 
Stuart Kauffman 

 

Renowned theoretical biology and complexity theorist Stuart 

Kauffman has perhaps done as much thinking and computational 

experimental work as anyone into questions of how emergent 

phenomena and self-organization emerge de novo from both natural 

and artificial systems.  Kauffman has a strong focus on origin of life 

theory and takes the stance that life emerged from a spontaneously 

self-organizing network of chemical reactions which formed closed 

systems he terms autocatalytic sets (Kauffman, 1993). Catalysis in 

chemistry is the process wherein a molecule is involved in the 

formation or breaking of bonds of other, smaller molecules. From 

digestion to the formation of proteins, the very building blocks of cells, 

catalysts power living machinery. Kauffman proposes that the 

propensity of the universe is to self-organize. A review of the 

voluminous corpus of Kauffman’s work is beyond the scope of this 

thesis. However, there is a recent direction to his work relevant to the 

hypothesis presented by this thesis which we will discuss next. 

 

In the interview with Rangarajan above, we were introduced to 

the concept of fitness landscapes. Let us now reexamine these 

landscapes with respect to their relevance to biology. In Charles 

Darwin’s travels around the world as a young man aboard the ship The 

Beagle he visited the Galapagos Islands off the coast of Ecuador. 

Darwin’s observation of populations of finches captivated him and 
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years later helped him develop the theory of natural selection (Lack, 

1940). We present a brief hypothetical version of the radiation of 

Darwin’s finch sub-species to illustrate concepts of a fitness landscape 

and of hill-climbing.  

 

Galapagos Finches with large beaks became adapted to trees 

with particularly hard nuts on one of the small Galapagos Islands 

whereas finches on another island evolved longer beaks to better feed 

on prickly pear cactus. Each sub-species of finch had therefore 

achieved its own “local maxima” and was doing quite well in the niches 

of the fitness landscape of these islands. Should the nut shells become 

harder or the cactus become scarce, each type of finch would have to 

adapt again or fail to survive. A finch with a longer, strong beak might 

well be able to survive on hard nuts as well as cactus and become 

prevalent on both of the islands. In this case the genes of that finch 

would have found a way forward up the “hill” of a higher peak of fitness. 

Those finches which were still perched on their lower fitness peaks 

would face imminent danger of extinction. This example illustrates the 

interplay between the information system (the genes) and the 

environment, both of which are ever-changing. The “algorithm” 

traversing this landscape is the actual bird, the phenotype expressed 

by its genotype. 

 

In his book At Home in the Universe (Kauffman, 1995, p. 248) 

Kauffman gives us a complexity theorist’s view into the nature of fitness 

landscapes and the entities that reside on them: 

 
…on random landscapes, local hill-climbing soon 

becomes trapped on local peaks far from the global optimum. 
Therefore, finding the global peak or one of a few excellent 
peaks is a completely intractable problem. One would have to 
search the entire space to be sure of success. Such problems 
are known as NP-hard… No search procedure can guarantee 
locating the global peak in an NP-hard problem in less time than 
that required to search the entire space of possibilities… the real 
task is to search out the excellent peaks and track them as the 
landscape deforms. 
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Any computer simulation involving many interacting objects 

could be seen as an embodiment of a fitness landscape. With a large 

number of objects able to interact in a number of complex ways, such 

as atoms forming molecules, this landscape would be, in Kauffman’s 

term, rugged. A rugged landscape would have many peaks and 

valleys, with potentially a few excellent (highly optimal) peaks present, 

or perhaps a globally “best” peak (see B in Figure 23). Note that the 

term K in the figure represents Kauffman’s richness of epistatic 

couplings (Kauffman, 1995p. 183). A search procedure that hopes to 

track emergent structures or behaviors across a sea of these peaks 

could be cast as an algorithmic entity attempting to find local maxima. 

To avoid the pitfalls of NP-hard spaces and make progress on these 

kinds of problems within a reasonable time frame, care must be taken 

in the design of the entire system. 

 

 
Figure 23 Simple and Rugged fitness landscapes as defined by 
Kauffman (Corman, 2011) 

 

Over several decades, Kauffman and his collaborators 

pioneered the simulation of such sets utilizing a computably tractable 
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method called Random Binary Networks (RBNs). RBNs are 

interconnected nodes that pass messages to each other, causing state 

changes (to either an on or off state). RBNs have been used to show 

that complex phenomena emerge and self-organize spontaneously 

within loosely coupled networks of a large number of relatively simple 

objects. In recent years, Kauffman has begun to move beyond RBNs 

and determined that the simulation of chemical reaction networks 

shows great promise to illustrate another concept: the Adjacent 

Possible (Kauffman and Damer, 2011b): 

I have this dream that one could really show on a 
"hypopopulated" vast reaction graph that fluctuations did NOT 
die out, but advanced into different Adjacent Possibles. 
 

What Kauffman is referring to is a theory of the arising of 

acausally-driven novel organizational phenomena which he calls the 

Adjacent Possible (Kauffman, 2000). Relating to the concept of 

selection on fitness landscapes, the adjacent possible may be briefly 

summarized as follows: the net effect of beneficial mutations that 

permit clustering around maxima then lowers the probability of 

regression back down into less optimal states. In a kind of ratcheting 

process Kauffman explains that the “ever enlarging space of 

possibilities [expands] into an ever larger adjacent possible” (p. 42). 

From this arises Kauffman’s feeling that “I can sense a fourth law of 

thermodynamics for self-constructing systems of autonomous agents” 

(pp. 42-43). It should be pointed out that Kauffman’s views remain 

controversial within the scientific community (Mitchell, 2009, p. 286). 

However, despite this, his approach represents a substantial school of 

thought within complexity science, which as yet has no one central 

theory. It is for this reason that we utilize Kauffman’s conceptual 

scaffolding to support a part of the value proposition of the approach 

taken by the EvoGrid. 

 

In a dialogue with Kauffman, the themes and research of this 

thesis work were shared. Subsequently the author was invited by 

Kauffman to join a working group being established at the CERN 
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physics laboratory in Geneva, Switzerland to build systems (Kauffman 

and Damer, 2011ab). Kauffman introduced the author and the project 

to this group as follows: 

…Bruce Damer, who is working on chemical reaction 
dynamics on vast chemical reaction graphs with only small 
amounts of matter on them, i.e. hypopopulated by matter 
reaction graphs. My own bet is that here fluctuations do not 
damp out and we get non-ergodic behavior within lifetime of 
[this] universe. Bruce, welcome to the group. Your work bears 
on Origin of Life in terms of reaction dynamics in the messy 
world of prebiotic chemistry from which messy life emerged. 

  
 

To understand the references here, let us review Kauffman’s 

recent proposal of an experimental simulation designed to test his 

theory of the adjacent possible. This testing setup would involve a 

computing environment in which the six most common types of atom in 

organic chemistry are simulated using computably tractable “quantum-

lite” bond interactions. The formation of compounds would then be 

represented through the standard chemists’ tool of reaction graphs. 

Kauffman specifies this system in detail: 

How will our reaction system behave? Actually, no one 
knows. We have a vast reaction graph and a tiny amount of 
matter "on" it, it is "hypo-populated". No one has studied such 
systems. In this toy - real world, we get to place atoms and 
specific kinds of organic molecules in our reaction system. Now 
the mathematical way to study such a classical reaction system 
is by what is called a "chemical master equation". This fancy 
sounding thing is just this: For any distribution of atoms and 
molecules on the reaction graph, write down all the single next 
possible reactions that can happen. Then a neat algorithm, the 
Gillespie algorithm, simulates the behavior of this system by 
choosing at in a biased random way, depending upon the 
number of copies of each kind of molecule, which of the 
reactions occur and when it occurs. Then one repeats this 
zillions of times, burning up lots of computer time. The atoms 
and chemicals "flow" stochastically - that is, non-
deterministically - across the reaction graph.  ((Kauffman, 2010) 
 

What Kauffman then proposes is that in a thermodynamically 

closed environment, the arising of unique patterns of molecules, which 

then predetermine further unique assemblages in an acausal (non-

deterministic) manner, would accumulate and that the system would 
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never reverse and run back down to equilibrium (“the fluctuations did 

NOT [emphasis by Kauffman] die out, but advanced into different 

Adjacent Possibles”). If the experiment showed this ratcheting property, 

it could imply that the universe itself is predisposed to promote the 

arising of ever more improbable outcomes and that this effect is not 

reversible. This would be a fundamental new result that has 

implications for the understanding of the origin of life as well as for the 

arising of all other complex organized phenomena throughout the 

history of the universe. What is exciting about Kauffman’s ideas, and 

they are at present just ideas, is that the abiogenesis of living systems 

is a natural outcome of a functioning yet uncharacterized “law” 

operating constantly in the universe. 

 

This communication from Kauffman came late in the process of 

this research, long after the prototype was built and while it was in its 

final month of experimental trials. As we shall see in Chapters Two and 

Three, his experimental setup eerily corresponds to the actual 

prototype system that was built. This late input will permit us to 

speculate somewhat more courageously about the importance to 

science of efforts like the EvoGrid and provide some clear objectives in 

our road map in the final chapter. One last point that is valuable to 

make emerged from the author’s meeting with Professor Freeman 

Dyson in Princeton, New Jersey, in early 2009. As discussed 

previously, Dyson pointed out that any simulation had to be very messy 

to represent the messiness of nature echoing Kauffman’s later 

communication that the EvoGrid as envisioned could indeed simulate 

“the messy world of prebiotic chemistry from which messy life 

emerged”. 

 

Summary 

 

Concepts from key thinkers and open questions in complexity 

systems science provide important insights into the framing of the 

design of a system like the EvoGrid. Concepts of fitness landscapes 
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and the algorithms that move about on them form the basis for 

understanding the process of optimizing the occurrence of emergent 

phenomena. The EvoGrid could be seen as an experimental system to 

permit testing of theories in complexity systems science. The validation 

of the value of the EvoGrid effort by key researchers in complexity 

systems science provides additional motivation around the value to 

science and contribution to knowledge of the work. 

 

1.2.2 Prior Art and Current Practices of the Computational 
Simulation of Chemistry 

 

Simulation science and its associated technological realizations 

in computer architecture are a continuous quest to move abstract 

models and computer codes ever closer to usefulness in understanding 

and predicting structure and behaviour in the physical world. Eugene 

Wigner wrote in 1960 in his article ‘The Unreasonable Effectiveness of 

Mathematics in the Natural Sciences’ that “… the enormous usefulness 

of mathematics in the natural sciences is something bordering on the 

mysterious and… there is no rational explanation for it” (Wigner, 1960). 

Today, aircraft, automobile and buildings are very completely simulated 

prior to being built and tested. The power of simulation is only now 

being applied to chemical processes. This section will briefly review 

historical approaches to the problem and the current state of the art. 

 

Environments on the surface of planets are bounded by and 

made up of solids and gaseous phases of matter. At one level, 

however, they consist of different densities of bonded and free atoms in 

constant motion. Underlying this basic picture of reality lies yet more 

complex interaction and entanglement of subatomic particles: the 

longer range forces of electromagnetism, gravity and the not-so-subtle 

physical effects of temperature and pressure gradients. One of the key 

questions builders of simulations must ponder is: at what level to 

simulate? 
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1.2.2.1 The History and Current State of Chemical Simulation 

 

Early efforts to simulate the interaction of large numbers of 

particles were often limited to the most mathematically and computably 

tractable data structures of the day. Matrix algebra consisting of the 

manipulation of vectors and its implementation in low scale integrated 

circuits provided a major boost to early supercomputing efforts. The 

first purpose-built vector-based supercomputers designed by Seymour 

Cray (Damer, 2003a) were early systems capable of running artificial 

chemistries. Figure 24 shows an example of one of these systems from 

the author’s private collection. 

 

 
Figure 24 Cray-1S Supercomputer from the author's private collection 

 

While the Cray supercomputers focused their particle 

simulations toward large science problems of the day, such as: 

modelling thermonuclear explosions, climate, or aerodynamics, a 

related approach helped initiate the simulation of chemistry. 

 

1.2.2.2 Lattice and Cellular Automata Techniques 

 

Also based on the ease of manipulating numerical arrays was 

the lattice gas and cellular automata approach as described by 

(Hasslacher, 1987, p. 175-217). Figure 25 shows the conceptual 
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framework of a three dimensional cubic lattice on the left with particle 

motion and nearest neighbour encounters between particles occurring 

through “nodes” depicted on the right.   

 

 
Figure 25 Concept of a Gas Lattice simulation 

 

(Fredkin, 2004) proposed the twelve edge-centred directions but 

most lattice gas implementations use eighteen (face and edge 

centred).  Applications of lattice models for artificial chemistries go 

back to von Neumann (von Neumann and Burks, 1966) who sought to 

design a self-replicating machine known today as a cellular automata, 

or CA. It was von Neumann who first linked CAs and simulation to a 

key property observed in biology, that of self-replication. As previously 

discussed, it was Barricelli who built the first biologically-inspired 

simulation on von Neumann’s digital computer at Princeton (Barricelli, 

1953). In the 1960s Richard Gordon (Gordon, 1966, Gordon, 1967, 

Gordon, 1968b, Gordon, 1980) pioneered the use of lattice 

computation in the simulation of chemical activities, writing that “The 

internal structure of digital computers is particularly well suited for 

representing lattices and therefore the physical or chemical adsorption 

of atoms or molecules onto lattices” (Gordon, 1968a). 
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Figure 26 Langton Loop generated by the Golly CA program 
 

CAs are organized typically as a two or three dimensional grid of 

finite state machines linked locally to their nearest neighbours. Finite 

state machines can be simple (bits turned on or off or a set of symbols) 

or they can be complex (reaction graphs as in Kauffman’s random 

binary networks). The time evolution of the states in each machine and 

how the machines affect their neighbours determine the overall state of 

the space of the CA. Chris Langton developed his well-known “self-

replicating loops” in the early 1980s (Langton, 1984). This was an eight 

state CA of 86 cells and able to self-replicate in 151 steps. Figure 26 

shows a “Langton Loop” generated by the widely used Golly CA 

program (Trevorrow and Rokicki, 2011). The typical structure of a CA is 

evident here with eight types of state shown active within this particular 

CA. 

 

1.2.2.3 Tuple-based Systems and Dissipative Particle Dynamics 

 

As computing power increased in the 1980s and 1990s it 

became viable to move away from fixed grids of locations in space as 

epitomized by gas lattice and CA systems and move toward tuple 

systems, wherein particles were assigned a set of three coordinates 

and able to assume any location in space. An early example of a 

computably tractable tuple-based artificial chemistry came with the 

development of dissipative particle dynamics (DPD) presented in 1992  

(Hoogerbrugge and Koelman, 1992) as a method for simulating 

complex fluids at the mesoscopic level. In the origins of life field, 

(Fellermann, 2009b) and (Solé et al., 2009) have adapted DPD work in 

coarse-graining and scaling in DPD and produced some early 
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computer models of protocell replication, notably the self-replication of 

lipid aggregates. Fellermann writes: 

…DPD are instances of coarse-grained modeling 
techniques in which the spatial structure of molecules is 
represented explicitly, though not in full atomistic detail. Instead, 
groups of atoms within a molecule are lumped together into 
point particles, usually called beads. These beads are then 
connected by elastic springs to form the whole molecule. Small 
molecules such as water are considered to be combined into a 
single bead by groups of 3 to 5 molecules. 
 

 
Figure 27 Example coarse-grained representation of water (on left) and 
decanoic acid (a fatty acid surfactant) on the right 
 

Figure 27 from (Fellermann, 2009a, p. 25) illustrates the method 

of coarse graining: three types of beads represent a grouping of three 

water molecules, the hydrophobic tail of the surfactant and the 

hydrophilic carboxyle group. DPD methods have been successful in 

generating mesoscale simulations such as the metabolism and fission 

of a nanocell, which will be covered in Chapter 4 of this thesis. Before 

moving on to the next technique, it is worth stating why coarse-grained 

methods are favoured for some applications, especially when involving 

macromolecular structures as described here: computational 

tractability. Fellermann writes that “the time scale of MD is an expected 

three orders of magnitude slower than DPD (Groot and Warren, 1997)!” 

 

1.2.2.4 Molecular Dynamics 

 

Molecular dynamics (MD) simulations are employed to model the 

motions of molecular systems at an atomic level of detail. MD systems 

are used to simulate proteins, cell membranes, DNA and other cellular 

processes (Shaw and Dror, 2008, p. 91). The key computational cost of 

MD is that in modelling the random, heat-driven motion within a 

gaseous or aqueous environment every atom is interacting with a large 
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proportion of the other atoms within a single second. From Shaw (p. 

91): 

Millisecond-scale simulations of a biomolecular system 
containing tens of thousands of atoms will in practice require that 
the forces exerted by all atoms on all other atoms be calculated in 
just a few microseconds—a process that must be repeated on the 
order of 1012 times. These requirements far exceed the current 
capabilities of even the most powerful commodity clusters or 
general-purpose scientific supercomputers. 

 

(Andrews and Bray, 2004) provide a lucid description of the 

challenge of all atomistic simulation systems such as MD: 

Using an intuitive picture of chemical reaction systems, each 
molecule is treated as a point-like particle that diffuses freely in 
three-dimensional space. When a pair of reactive molecules 
collide[s], such as an enzyme and its substrate, a reaction occurs 
and the simulated reactants are replaced by products. Achieving 
accurate bimolecular reaction kinetics is surprisingly difficult, 
requiring a careful consideration of reaction processes that are 
often overlooked. This includes whether the rate of a reaction is at 
steady-state and the probability that multiple reaction products 
collide with each other to yield a back reaction. Inputs to the 
simulation are experimental reaction rates, diffusion coefficients 
and the simulation time step. From these are calculated the 
simulation parameters, including the 'binding radius' and the 
'unbinding radius', where the former defines the separation for a 
molecular collision and the latter is the initial separation between 
a pair of reaction products. 
 

It is important to note that every set of codes developed to solve 

the above problem uses different models. Many share common 

attributes such as the heat, or kinetic energy of the system (motion), 

and reactions (formation or breaking of bonds) which relate to the 

concept of binding and unbinding radii and collision energies. Some 

MD codes do not explicitly deal with chemical reactions but concentrate 

on the geometries of pre-built molecules.  
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Figure 28 An alanine dipeptide molecule used to illustrate physics on 
this scale: atoms are modeled as charged spheres connected by 
springs which maintain bond lengths and angles while interacting with 
each other via Coulomb's law simulated through a molecular 
mechanics potential energy function. 
 

As is illustrated in Figure 28 above (diagram courtesy Wikimedia 

Commons (Edboas, 2011)), if chemical reactions are supported, then 

their codes must deal with a steady stream of reaction products 

(molecular assemblages) which then express complex internal 

interactions (Lennard-Jones forces, for example) and external 

interactions (the hydrophobic effect, for example). A full elucidation of 

the operation of MD simulations or artificial chemistries is beyond the 

scope of this thesis. To a great extent we are treating these MD code 

frameworks as “black boxes” within the central emphasis of this work: 

distributed computing and optimization methods. It is, however, 

valuable to consider some of the leading MD codes available, as this 

will factor into our particular choice of “black box”. 

 

ESPResSO 

 

There are a number of packages built under open source (GNU 

General Publishing License-GPL) which support MD. We are reviewing 

these packages as they are all candidates for this research since they 

do not require commercial licensing fees. The first is ESPResSo 
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(Extensible Simulation Package for Research on Soft matter), which is 

a feature-rich package supporting MD as well as DPD developed by 

(Limbach et al., 2006). ESPResSo supports an external scripting 

language (Tcl) which allows the framework to be extended and 

reactions added. As we are considering each of these MD simulation 

systems as “black boxes” with inputs and outputs for the purposes of 

distributing them within a framework, we will not go into the internal 

details and capabilities of each.  

 

LAMMPS 

 

The second framework we will consider is LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) an efficient and feature-

rich MD package that also has support for DPD (Plimpton, 1995). 

LAMMPS is designed for single processor desktop computers but also 

for multiple processor implementation (MPI) and operation over a 

network. LAMMPS is extensible via C++ application programming 

interfaces (APIs). 

 

NAMD 

 

The third framework we will examine is NAMD (Not just Another 

Molecular Dynamics program). (Phillips et al., 2005, p. 2) give an 

introduction to NAMD stating that a decade ago the platform “permitted 

simulation of a protein-DNA complex encompassing 36,000 atoms 

(Kosztin et al., 1997)“ whereas more recent releases “permitted the 

simulation of a protein-DNA complex of 314,000 atoms (Villa et al., 

2005)”. As NAMD is an example of a system designed to be run on 

large commodity PC clusters we will treat it more in the next section. 
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GROMACS 

 

 
Figure 29 GROMACS visualization from the Folding@Home project 
(credit, team member Lufen, Folding@Home) 
 

GROMACS (Groningen Machine for Chemical Simulations) is the 

last GNU-licensed MD package we will consider and is the code we 

selected for the implementation of the EvoGrid prototype. GROMACS 

was first developed in Professor Herman Berendsen’s group in the 

department of Biophysical Chemistry of Groningen University (van der 

Spoel et al., 2005). GROMACS is consistently rated as the fastest MD 

simulation system running on commodity computers (van der Spoel, 

2011), which was a major consideration for this project. GROMACS 

also has a previous history as an engine behind distributed computing 

based on its use in the Folding@Home project (see Figure 29) which 

will be discussed in the next section. 

 

1.2.2.5 The Scale Continuum in Artificial Chemistries 

 

As we can see there is a continuum of AChems ranging from the 

abstract and more computationally tractable to higher fidelity vis-à-vis 

chemistry yet much more computationally intensive. There is another 

continuum: scale. Sometimes referred to as multi-scale or multi-

physics, this is the challenge of simulating at different levels of 

granularity. Obviously the coarse-graining of dissipative particle 

dynamics discussed earlier in this section is one example: simulating 
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solvents (water in this case) by aggregating water molecules may 

serve some utility at one level, but simulating each individual water 

molecule may be required at another level, and at another level 

individual water molecules are forever exchanging atoms with one 

another by making and breaking hydrogen bonds. Several approaches 

to the problem of simulating AChems at multiple levels have been 

proposed (Hickinbotham et al., 2010) and mechanisms to automatically 

move between levels also postulated (Nellis and Stepney, 2010). While 

the emergence of coarser scales may occur within our simulations the 

explicit handling of multiple scales is beyond the scope of this work. 

 

Summary  

 

In conclusion, as we can see by the substantial investments 

being made and significant early results, among all of the approaches 

to simulate molecular interactions, MD has emerged as an early 

predictive tool in chemistry. The utility of MD has been established 

through innovative use of dedicated, parallel supercomputers and 

through distributed commodity computing grids. For our formulation of 

an experimental platform to support experiments in emergent 

phenomena in complexity systems using AChems, it is suggestive that 

we employ MD simulation in some kind of parallel or distributed 

computing environment. We will take up such environments next. 

 
 
1.2.3 Past and Current Approaches to Parallel and Distributed 
Simulations of Artificial Chemistries and Molecular Dynamics 
 

In the years since the launch of the Cray supercomputer in the 

mid 1970s the support of scientific simulation has undergone a 

transformation from dedicated machines like the Cray to large-scale 

networks of small computers. More recently we have seen the return of 

dedicated supercomputers. This section reviews a number of current 

hardware solutions and distributed computing topology solutions to the 

problems of chemical simulation. 
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A major challenge in simulating chemistry at the MD level is the 

sheer amount of computation required for very small populations of 

atoms and time durations (in nanoseconds up to microseconds). 

Therefore in this early phase of the maturing of the use of MD tools, 

parallel and distributed computing and optimization techniques will and 

are playing an important role to the early efficacy of these tools. From 

(Kalé et al., 1999) the authors argue for the case for parallel and 

distributed computing of MD because “the time scale of [ten thousand 

to one hundred thousand atoms interacting] requires that one simulate 

their behavior in time steps as small as 1 fs (10-15 s)… [and that] the 

number of computational steps required to complete relevant 

simulations is prohibitive on any single-processor computer” (p. 284). 

 

Several projects including FASTRUN (Fine et al., 1991), 

MDGRAPE (Taiji et al., 2003), and MD Engine (Toyoda et al., 1999) 

each have produced special-purpose hardware to support the 

acceleration of the most computationally expensive stages of an MD 

simulation. The Anton supercomputer (Shaw, 2009) mentioned 

previously is producing the most dramatic performance improvements 

in MD simulations to date achieving from microseconds up to one 

millisecond of chemical simulation time of a virtual system of over ten 

thousand atoms making up a small protein enveloped by water 

molecules. The MD simulation was able to be carried out long enough 

to observe the protein folding and unfolding multiple times. The 

structure of the folded protein was then tested with real physical 

analogues in vitro and new properties were experimentally verified 

(Shaw et al., 2010). This work by Shaw et al. has established that the 

closing of the loop between computer simulation and chemical 

validation which we proposed in our definition of cyberbiogenesis is 

now practical, if expensive. 
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1.2.3.1 Commodity Cluster Simulation using NAMD 

 

NAMD2 (Kalé et al., 1999) is a second release of the popular 

NAMD code. This release has been optimized for clusters of 

commodity computers and its previous version was reported (Phillips et 

al., 2005, p. 23) to have run “a 310,000 atom system on 256 Itanium 

processors of the NCSA TeraGrid system with an average production 

speed of 2.5 ns per day.” Proposals to simulate millions to a billion 

atoms, which would be required to model portions of a cell are being 

considered (Nakano et al., 2007). As we saw above from performance 

reported by Shaw et al., 2.5 ns per day is a full two orders of magnitude 

slower than the dedicated Anton supercomputer, however, Anton was 

simulating two orders of magnitude fewer atoms. In some sense this is 

not simply and apples and oranges comparison as the needs for 

simulation differ depending on the problem being addressed. 

 

1.2.3.2 Distributed Network Simulation in Folding@Home 

 

Distributed computing of seemingly intractable scientific 

problems has experienced a renaissance in the past decade.  

Beginning with the use of large collections of networked personal 

computers to break encryption mechanisms, searches through radio 

astronomy data in projects such as SETI@Home and the emergence 

of the BOINC network (Anderson, 2004) has all generated an 

enormous capacity to computationally solve classes of scientific 

problems. The networks supported by the BOINC network consist of 

home computers running screen saver software, and populations of 

university computers, often during off-hours. The combined distributed 

computing power of BOINC projects sometimes exceeds the 

computational capacity of many of the largest supercomputer clusters.  

 

As we have seen, the digital simulation of atoms and molecules 

on networks of commodity computers is beginning to emerge as a tool 

for MD. A leading effort in this area is the Folding@home project based 
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at Stanford University (Pande et al., 2003). Derived from the BOINC 

methodology Folding@home utilizes a fully distributed network of 

computing resources that includes college and home computers and 

even game consoles such as the Sony Playstation 3®. Folding@home 

employs the molecular dynamics code GROMACS. As is detailed later 

in this thesis, GROMACS was the platform adopted for this research. 

Folding@home has had significant success through the simulating of 

the interaction of the molecules of surrounding solvent with the ribbon 

like structure of protein nucleotides of predicting the folding geometries 

of proteins of up to several thousand atoms (Pande, 2011). In other 

words, Folding@home uses global search mechanisms to discover 

pathways to energy state minimization for these large molecules. 

 

 
Figure 30 Early Folding@home network in 2002, source: (Jones, 
2003a).  

 

Folding@home’s network topology (Figure 30) supports a large 

number of sequential simulations of a relatively small volume and is the 

best existing proof of concept that a system like the one we are 

proposing is viable. 
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Figure 31 Villin headpiece protein (simulation model) 

An example of a typical simulation target for Folding@home is 

illustrated in Figure 31. Michael Levitt and Erik Lindahl of the 

Department of Structural Biology, Stanford University School of 

Medicine describe the computational complexity involved (Jones, 

2003b): 

The Villin headpiece is a very small protein consisting of 
about 600 atoms. However, the cell is always surrounded by 
water (red/white rods), which brings the atom count up to about 
10,000. Every single atom interacts with the closest 100–200 
neighbors; the interactions have to be calculated every single 
step, and then we repeat this for a half-billion steps to generate a 
microsecond of simulation data. The data for [Figure 31] was 
generated from a two-week run on ten of Iceberg's nodes.   

 

1.2.3.3 The Challenging Path from In Silico to In Vitro 

 

Due to the intractability of chemical simulation of more than a 

few tiny volumes and over time scales beyond a few microseconds, a 

significant roadblock exists to the witnessing of the emergence of 

complex structures of behaviors commonly found in nature or the 

laboratory. It is therefore suggestive that the only doorway into this 

world is to operate a large number of small simulations each for short 

periods of time. We propose that, despite their diminutive nature, such 
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simulations can produce interesting results and inform larger future 

efforts. Such a computing challenge can be met by the innovative 

computational topologies of dedicated parallel supercomputers and by 

distributed networks of commodity machines. 

 

The nascent MD simulation industry has already adopted some 

of the more widely used techniques for applying computational power 

to problems, notably parallel and distributed computing. However, for a 

class of problems in chemistry where insight into the ab initio 

emergence of structures and behaviours is sought, additional 

optimization techniques can be brought to bear. This is particularly 

applicable in the case of the investigation of models of life’s origins 

focused on the emergence of structures (vesicles, informational 

molecules, and others) and behaviours (metabolic cycles, repair and 

replication and others) both independently and in combination. 

 

The predicting and verification of emergent phenomena in the 

study of the chemical origins of life are both experimentally challenging 

to “design”, control and observe in the “wet” or “bench” chemistry 

laboratory. As suggested earlier, since MD has proven itself as a 

tractable medium from which predictive chemical knowledge can be 

obtained it is possible that such tools could be adapted to meet the 

challenge of modelling emergent phenomena in abiotic chemistry. 

 

However promising the application of MD techniques to origin of 

life problems may appear, the corresponding technological challenges 

are truly daunting. The presupposed building blocks of life range from 

very small molecules to very large supramolecular assemblages such 

as amphiphilic bilayers containing hundreds of thousands to millions of 

atoms. In addition, the minimal operational volumes occupied by both 

molecules of interest and surrounding solvents (predominantly water) 

which would have to be simulated would contain millions of atoms, 

easily outstripping available computing resources. Finally, the 

timescales required of simulations to model even the most preliminary 



 
 

 85

biologically interesting phenomena that might lead to the formation of 

minimal protocells vastly outstrip the powers of the largest 

computational grids.  

 

Therefore by necessity the problem of simulation of the prebiotic 

medium must be broken down into very small segments indeed, where 

one is looking for an emergent phenomenon within tightly bounded 

molecular contents and timescales. One could conceive of a chain of 

such small in silico experiments, replicated in vitro, forming a linkage 

that would shed light on a larger chemical pathway leading from non-

life to life. This is the long view of an undertaking significantly beyond 

the scope of this thesis, but it is valuable to have more ambitious 

objectives in mind to guide the first few steps taken. Chapter Four will 

feature a treatment of this long-term view and the open questions that 

are posed to any effort that tackles simulation of life’s origins. 

 

1.3 A Working Map of the Cognate Fields 
 

One valuable result from the above survey of the literature is 

that we can see a logical pattern emerging that determines an order of 

consideration of knowledge informed by and informing cognate fields in 

a kind of cascade. Through this cascade of considerations we hope will 

emerge a design for systems whose goal is to meet the challenge of 

cyberbiogenesis. To explain and explore this cascade let us define 

some monikers for the cognate and related fields: 
 

Primary cognate fields: 

 

Complex Systems – Complexity Systems Science 

AChems – Artificial Chemistries 

SimTech – Simulation Technology 

COoLER Computational Origin of Life with Experimental Realization 
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Related cognate fields: 

 

OoL - Origin of Life 

AL - Artificial Life 

Search – Search Heuristics and Methods 

Optimize – Optimization Techniques 

TheoBio – Theoretical Biology 

SynthBio – Synthetic Biology 

 
Figure 32 Map of cognate fields and how cyberbiogenesis systems 
may emerge from an interaction between these fields 
 

Placing these major fields in a map (Figure 32) we start with 

Theory and the foundational cognate field of Complex Systems 

Science, which is informed both by the supporting fields of Origins of 

Life (OoL) and Artificial Life (ALife). Complex systems are the 

foundation field, however, as we are considering ab initio emergence of 

complex, self-organizing phenomena from a large field of interacting 

objects. The observation of self-assembly of macromolecular structures 

and gene-directed evolution in nature are a direct inspiration in the 

design of such Theory models. The Alife field of genetic algorithms 

mirrors natural behaviours in technology and provides some useful 

input to Theory models. Thus informed, our complex system theory will 

establish a concrete starting point for the next stage: the 

implementation of a prototype Simulation. 

 

For the Simulation phase we place the Artificial Chemistries 

(AChems) and Simulation Technology (SimTech) together as peer 
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cognate fields. As we saw in the above literature review, the expanding 

power yet persisting limitations of digital simulation technologies permit 

some progress to be made in artificial chemistries techniques such as 

CA, DPD and our focus: MD. There is a two-way dance between 

AChems and SimTech as each field advances. The supporting fields of 

search and optimization support the advancement of both AChems and 

SimTech. As Simulation problems can quickly enter computably 

intractable territory, these two supporting techniques will extend the 

range of their viability. As experimental systems are built in the 

Simulation stage, the Theory stage can also be revisited with what we 

hope might be the eventual development of an actual formal predictive 

model of understanding complex systems. 

  

Simulations which can demonstrate the emergence of 

biologically relevant phenomena may next be carried on into the 

Testing stage. The next step would be the attempted validation of the 

computational origin of life (COoL) simulations through experimental 

realization (ER) in physical chemistry. This challenging phase would 

use input from theoretical biology (TheoBio) in the form of models of 

experiments which might include RNA-world, vesicle assembling or 

autocatalytic cycles per Kauffman. The technology for creating such 

laboratory bench experimental setups would be best informed by the 

field of synthetic biology (SynthBio). Clearly there would initially be 

challenges in duplicating the results in chemistry that were observed in 

silico so both the Simulation and Theory phases would have to be 

revisited and revamped.  

 

Over time and through many years or decades of iteration this 

framework of interacting cognate fields would generate higher and 

higher fidelity pathways toward our vision of a complete 

cyberbiogenesis system expressed in our earlier thought experiment. 

Clearly, as indicated in Figure 32, the computational and chemical 

complexity increases as you go down through each of the three 

phases. The scope of this thesis effort lies therefore in the first two 
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phases, some development of Theory leading to the implementation of 

a modest prototype in Simulation but not setting foot at all in Testing. 

 

1.4 Objections to the Approach of Using Deterministic Digital 
Simulation in the Modeling of Natural Systems and Emergent 
Phenomena 

 

University College London researcher Peter J. Bentley strongly 

argues that von Neumann architecture of most conventional computing 

systems is fundamentally unsuited to model and simulate living 

systems, stating that “natural systems and conventional computing 

[are] at opposite ends of a spectrum” (Bentley, 2009, p. 106, Bentley, 

2007). Table 1 illustrates elements of Bentley’s spectrum by listing the 

opposing properties of each environment. He goes on to propose a “a 

system of computation that has biological characteristics” and 

proposes a design architecture for Systemic Computation (p. 107) 

which would embody concepts of “parallelism, stochasticity and 

asynchrony”.  

 

Conventional Natural 

Deterministic 

Synchronous 

Serial 

Heterostatic 

Batch 

Brittle 

Fault intolerant 

Human-reliant 

Limited 

Centralised 

Precise 

Isolated 

Linear causality 

Simple 

Stochastic 

Asynchronous 

Parallel 

Homeostatic 

Continuous 

Robust 

Fault tolerant 

Autonomous 

Open-ended 

Distributed 

Approximate 

Embodied 

Circular causality 

Complex 

Table 1 Features of conventional vs. natural computation (courtesy 
Peter J. Bentley) 
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This is a highly promising approach which should be able to 

address the computational challenges of artificial chemistries. 

However, it remains in the research phase with no working hardware to 

assist in projects such as the EvoGrid. Computer systems such as 

Anton described previously are based on conventional von Neumann 

concepts but designed entirely around the task of molecular dynamics 

calculation using off the shelf microprocessor technology. It will be 

interesting to see how exotic, re-thought computing approaches fare 

against custom designed von Neumann solutions in the race to 

produce high fidelity simulations of natural systems. 

 

Theoretical biologist David L. Abel argues that von Neumann 

computers are not just inefficient at simulating nature but are also 

inappropriate for this task, stating: 

Self-ordering phenomena arise spontaneously out of 
phase space, but we have no evidence whatsoever of formal 
organization arising spontaneously out of physical chaos or self-
ordering phenomena. Chance and necessity has not been 
shown to generate the choice contingency required to program 
computational halting, algorithmic optimization, or sophisticated 
function. (Abel, 2009b, p. 273) 
 

Abel builds on this to state that approaches to simulating 

abiogenesis or otherwise exploring living systems utilizing algorithmic 

techniques in computer software stand in stark contrast to the entirely 

physicodynamic properties of nature (i.e. chemistry). He states 

correctly that the chemical mechanisms of cellular metabolism and 

reproduction are driven by a clear form of symbolic program control, or 

“choice contingency”, through the programming selections of individual 

nucleotides (Abel, 2009a, Abel, 2010), codon sequencing, and gene 

regulation by peptides, polypeptides, proteins and mircroRNAs. (Abel, 

2009b) He calls this divide between physicality and formalism the 

Cybernetic Cut, claiming that it is “perhaps the most fundamental divide 

of scientifically addressable reality” (p. 274). In Abel’s analysis all forms 

of Artificial Life programming (and any results gained from them) are 
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highly suspect as naturalistic models of abiogenesis, since they sit 

solidly on the formal side of the Cybernetic Cut.  

 

Abel would therefore object to the design and implementation of 

the EvoGrid prototype simply because it is based on computers and 

software and therefore is a formally-based, non-physical system. He 

would also hone in on and critique the algorithmically-expressed 

teleological mechanism of our search functions tracking and pruning 

branches in their quest to permit the emergence of phenomena in the 

simulation. In fact in a private communication with Abel on the primary 

optimization technique of this thesis he stated:  

 

No basis exists in quality science for blind belief in a 
relentless uphill climb towards the pinnacle of functional 
success.   Physicodynamic determinism is blind and indifferent 
to formal function.  An inanimate environment couldn’t care less 
whether anything works, let alone works best. To purely physical 
interactions, non-function is just as good as function. Even if a 
pinnacle were ever stochastically reached, what motivation 
would exist to maintain an isolated function of any kind in a 
purely physicalistic [sic] reality. The only environmental 
preference is for a fully integrated, fully programmed, fully 
operational fittest phenotypic organism.   How many hundreds of 
highly integrated metabolic pathways and cycles would be 
required for Mycoplasma, the simplest known organism, to come 
to life? (Abel, 2011)  
 

It is difficult to argue with Abel’s position. However, it is put forth 

that by adopting the tools of molecular dynamics simulation utilized by 

chemists, the EvoGrid takes one step through formal space toward the 

physicodynamic side of the Cybernetic Cut. Indeed, as molecular 

dynamics systems in software are already serving science as 

predictive tools for discovering behaviour in chemistry with gene folding 

being one prime example (Pande et al., 2003), it would seem to 

suggest that computer simulations can make predictive forays into 

emergent phenomena that may have played a role in the self-assembly 

of the first simple living systems. In summary, the EvoGrid seeks to 
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travel some distance from the realm of programmatic, prescribed, and 

highly deterministic world of software and Alife systems by: 

• Emulating physicodynamic natural processes not abstract, formulaic 

systems. 

• Implementing an artificial teleological chemistry (AChem) based upon 

a system of a large number of encounters and associations of 

particles. 

• Starting with an ab initio approach wherein there are no pre-built 

forms in order to study the properties of emergence within 

physicodynamic systems. 

• Permitting a “loose” coupling between teleological search function and 

the state of the system by utilizing random selection. 

• Employing molecular dynamics techniques which seek to converge on 

a high fidelity model of chemical systems, yielding results which may 

be physically verifiable or falsifiable by laboratory chemistry, 

permitting a cycle of fine-tuning of the virtual experiments. 

 
1.5 Concluding Statement on the Scope of this Work 
 

While this work is both interdisciplinary and interstitial lying 

between and drawing from the above cognate fields it is fundamentally 

a work of computer architecture. The author’s career background lies in 

the building of computer software systems and not in mathematics, 

chemistry or biology. No mathematical or chemical models will be 

proposed or treated, except to illustrate some basic concepts. Indeed, 

as the scope of the project is to show that the aforementioned 

techniques can be successfully applied to molecular dynamics and 

other artificial chemistry simulations, a highly naïve model of chemistry 

was utilized. The modelling of high fidelity chemical systems is 

currently the purview of large engineering teams equipped with 

sizeable hardware and budgets.  However, we believe that we can 

show benefits from our optimization techniques and other advantages 

of our prototype architecture that could be adopted by future 

researchers to support full-scale chemical simulations.  
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To prevent confusion or misunderstanding, this preliminary work 

on a computational origin of life endeavour is not: 
1. An origin of life simulation system; 

2. a complete artificial chemistry or molecular dynamics system; 

3. a viable test-bed for general complexity science; 

4. or an artificial life system able to exhibit properties of artificial 

evolution. 

 

Instead, the prototype to be designed and implemented is: 
1. A software prototype employing open approaches and distributed 

computing utilizing a standard software component from the field 

of molecular dynamics; 

2. a system designed to illustrate how optimization techniques 

including search and stochastic hill-climbing when applied to 

distributed computing can be applied to achieve the result of 

permitting emergent phenomena to arise within artificial 

chemistries while saving time and computational costs; 

3. and an exemplar of the technological and epistemological 

conundrums facing origin of life researchers in building systems 

that could cross the chasm between abstract models and concrete 

chemical reality. 

 
With the above introduction to the tools and challenges at hand 

we may now pare down the scope of the challenge undertaken by this 

work to a more reasonable level: 
1. Design, construct and test a software simulation framework which 

deploys an industry standard molecular dynamics code engine to 

simulate small volumes of artificial chemistry over short time 

frames within a distributed computing framework.  

2. Further, apply stochastic hill climbing optimization techniques to 

this framework which produces a flexible system to search for 

desired phenomena and build upon this to support branching of 

new volume simulations as well as back-tracking to restart from 

previously promising simulations.  

3. Test and measure the performance of this system in a series of 

computational experiments. Compare a control case not using 
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optimization to the search-driven experiments. Estimate the 

reduction of computational time taken to reach a desired 

simulation state, and examine performance with respect to scaling 

the amount of computing resources available. The dual criteria for 

success are the reduction of computational time together 

increased levels of observed complexity in the system over control 

experiments not employing these optimization techniques. 

4. Apply lessons learned from this work to guide future efforts to build 

systems to simulate scenarios in more realistic prebiotic chemical 

environments.  

 

Summary  

 

Now that the scope of work is sufficiently narrowed and the 

background cognate fields established, we can reiterate our belief in 

the intrinsic value of this exercise to science. We believe that the 

successful implementation of such a system may have the following 

value for complexity systems science: that the tools of chemical 

simulation may hold the keys to building a system capable of open 

ended complex emergence. Synthesizing the worlds of chemical 

simulation with their requisite richness in terms of simulated physics, 

with widely used distributed computational search and optimization 

techniques, may ultimately produce this result.  In conclusion therefore 

we believe there is a value to proceeding to design, build and test the 

following system which exhibits the following computational cost-saving 

and observably emergent properties: a distributed processing and 

global optimization through search coupled with stochastic hill climbing 

of emergent phenomena within small volume, short time frame 

molecular dynamics simulations. 
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Chapter 2: Design for the EvoGrid Simulation 
Framework and Optimizations 
 

Introduction  
 

Given all the considerations from the cognate fields explored 

above, how would one design the computational aspect of a 

cyberbiogenesis system? In 2008 an initial design for a prototype of 

such a system was sketched out by the author. Over a series of 

months, this approach was presented for comment to members of the 

author’s technical staff and to an international multidisciplinary group of 

advisors, who are all acknowledged in this thesis. The design 

underwent many improvements but the original insight held. This 

chapter will review the reasoning behind this design, describe it in 

detail, and compare it with similar systems built for other purposes.  

 

To reiterate, we are aiming this design of a computer simulation 

implementation in the direction of endeavours regarding questions of 

the origin of life. The author realized that it would be valuable to 

engage in a second thought experiment and came up with a naïve 

model of the origins, operating principles and development of a 

simplified virtual universe in which life has arisen. While understanding 

the origins and evolution of the real universe is far beyond the scope of 

this work, the resulting naïve cosmology was found to be valuable 

underpinning for the philosophy of the simulation. We will therefore 

repeat it here, in abbreviated form. 

 

In the exercise of the design of our computer simulation system 

we therefore take the liberty of applying teleological goals that set the 

system up to find its way toward a state of increased associations. 

These teleological goals are our stand-in for this observable effect in 

the universe. However, careful observation of the universe in the large 

and the small, as well as the process of evolution, is not able to detect 

any goal-setting (Dawkins, 1986).  
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Our teleological choices, which we call “search functions,” will 

be described later in this chapter. Their definition is not totally arbitrary 

even if we consider ourselves to be artificial gods and have free will to 

assign any whimsical property we would like the system to achieve. 

These search functions are informed by prior knowledge of the general 

properties of living systems and the likely steps and elements that life 

required to arise. 

  

2.1 The Design of a Simulation System to Explore Origins of Life 
Questions 

 

Any software prototype which purports to simulate the physics of 

chemistry is at some level itself highly naïve. After all, at some level, 

each of the virtual “atoms” or “molecules” is merely a list of numbers or 

symbols stored in some kind of abstract data structure and processes 

as though it were an object in reality. In molecular dynamics 

simulations many of the subtleties of the quantum mechanical level and 

behavior of electron orbitals are not represented. However, we can 

come up with a workable analog of the above naïve cosmology (and by 

extension and goal, of reality) by building a system to simulate random 

encounters between great numbers of virtual particles (notional atoms) 

in which a proportion of them form associations (virtual molecules). 

This is at least a good start and many competent artificial chemistries 

have been constructed around this assumption and have succeeded in 

guiding laboratory experiments (Pande, 2011, Shaw et al., 2010). 

 

2.1.1 Design of a Generic Canonical Contiguous Volume In Silico 
Chemical Simulation    

 

A second step in the design of our prototype framework requires 

us to make choices about what kind of volumes are being simulated. 

As we reviewed in Chapter 1, simulating a large single volume of 

molecular interaction poses both computational and organizational 

challenges. Boundary problems in distributing simulations of smaller 
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parts of a larger contiguous volume across many computers tax these 

systems with extra communications overhead. This can be understood 

simply by picturing one atom traveling across the larger volume, all 

along the way it will transition between sub-volumes and a record of its 

location must be distributed rapidly and accurately between the 

computers handling these sub-volumes. Dedicated sub-system 

hardware was built into the Anton MD supercomputer to handle these 

boundary problems (Shaw and Dror, 2008). 

 

Figure 33 depicts the conceptual form of a contiguous large 

volume simulation: perhaps a large contiguous space of millions (or 

more) virtual atoms driven by a large number of processors (in blue). 

Sitting outside are an equally (or greater) number of computers 

dedicated to analyzing parts of this simulation and applying the 

directed search technique. In this simplified scenario, interesting 

“areas” of the contiguous simulation space are selected for more 

computing resources.  

 

 
Figure 33 Conceptual view of artificial chemistry simulation grid 
 

Figure 34 through Figure 37 depicts a high level conceptual view 

of the processing of molecular interactions within a single large volume. 

Figure 34 depicts how the volume would be broken up into cubic 

subvolumes and processed as a series of layered snapshots. 
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Figure 34 Conceptual view of layered approach to processing time 
snapshots 

 

Figure 35 depicts how these cubic subvolumes we call frames 

might be distributed to analysis clients in a series of buckets 

representing queues. This concept of processing queues will be utilized 

later in the actual implementation of how the EvoGrid’s simulation 

manager prioritizes and processes simulations (see section 2.3).  

 

 
Figure 35 Conceptual view of distribution of snap shot sub-volumes to 
analysis grid 
 

Figure 36 shows an overview of the complete conceptual cycle 

from analysis clients distributing results back to a simulation manager 

which then affects how the ongoing volume simulation is carried out.  
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Figure 36 Conceptual view of feedback of distributed analyses to 
server 
 

Figure 37 concludes our conceptual overview by illustrating the 

steps of analysis and search creating scores for individual frames that 

then inform the simulation manager.  

 
 

 
Figure 37 Conceptual view of weighted analyses based on observed 
phenomena 

 

Due to a number of issues, not least among them the challenges 

of managing the communication between simulating grid machines 

assigned their own small subvolume this elegant high level view must 

rapidly give way to other architectural options. 
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We are therefore motivated to undertake the far more tractable 

challenge of simulating much smaller volumes, representing no more 

than one thousand atoms per unit volume. This design choice restricts 

the type and scale of molecular structures and processes that could 

arise within the small volumes. Even simple proteins found in living 

cells often are composed of several thousand atoms. Surrounding 

reactants and solvents would add several thousand atoms into the mix. 

As reported by (Shaw, 2009) meaningful simulations of such volumes 

are now possible and desirable for biochemistry. So there is promise 

with this approach, especially as computing power grows. 

 

We must therefore give up all immediate hope of simulating, 

say, even a tiny fraction of the molecules making up a cell or any 

significant structure in a cell. For example, the derived estimation for 

number of carbon atoms alone in E. coli, a “relatively” simple 

prokaryotic cell, is ten raised to the tenth power, or 10,000,000,000 (ten 

billion) atoms as estimated in (Philips and Milo, 2009). By 

concentrating on small self contained volumes containing no more than 

a few thousand atoms we gain significant benefits. The key benefits 

are: the ability to more easily distribute computation of these volumes; 

and to apply search criteria to branch and backtrack processing of 

volumes whose full state may be stored for temporal and trend 

analysis. 

 

Having chosen this design path we can apply searching and 

tree-branching processing of simulations to provide undirected (that is, 

directed only by random production and selection) formation of 

increasingly rich local environments. To return to our naïve model of 

the cosmos, we would design the simulation criteria to permit the 

emergence of enriched environments. This means an increasing 

propensity for small volumes of virtual chemistry to develop more 

associations or atom-atom bonds. In no way was it expected that the 

prototype considered here would come anywhere close to addressing 

the question of how the first plan-following mechanism or protocell 
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might have arisen. This is left for future researchers and suggestions 

as to likely technical challenges are provided in the balance of this 

writing. What we hope to show with our first implementation of such a 

simulation platform is that it may be possible in principle to build such 

systems. 

 

While there are a few well funded efforts to build special 

purpose computing hardware designed only to simulate molecular 

interaction (Shaw and Dror, 2008) our approach is to employ off-the-

shelf von Neumann-type general purpose digital computers. Such grids 

of computers would be readily available for a modest effort like this. 

The use of distributed computers also fits well with the small volume 

approach. 

 

2.1.2 Life in the World of Biomolecules Informing the Simulation Design 
 

Beyond the simple simulation of the content, simply stated as 

the presence and movement of simulated atoms, the variety of atom-

atom associations formed are the next consideration in design. Along 

with the traditional covalent and ionic bonds (where electrons are 

shared) there are number of other ways in which atoms and groups of 

atoms can associate, the so-called molecular affinities (Deamer, 2011, 

pp. 114-122). One such famous affinity is the hydrophobic interactions 

which loosely hold lipid together in the bi-layer of a cell membrane. 

These associations add an additional layer of computational complexity 

to each encounter between molecules and their member atoms. 

  

The challenges of the representation of molecular shape and 

shape changing derive from molecular affinities. In recent years, 

significant progress has been achieved in creating simulations able to 

predict these shapes (Shaw et al., 2010). In addition and related to the 

shape that molecules take and then change when in solution is the 

challenge of modeling the surrounding solvents (in this case water, 

H2O) which is arguably necessary (Luisi and Damer, 2009). Without 
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the constant “bumping” of surrounding small molecules, molecules 

such as proteins, which are made up of a string of amino acids, would 

not take on their characteristic shapes. The shape of molecules is 

essential to their function as information containers or functional 

mechanical tools of molecular biology.  

 

One last detail to point out is that within the relatively small, 

confined space of a single cell, there is a tremendous amount of 

dynamism. For example a sugar molecule situated at one end of the 

cell will be driven by thermodynamic forces into a state of constant 

motion and will travel within a few seconds all through the cytoplasm. 

During this frantic movement that molecule will encounter most other 

free-floating molecules and the boundaries of interior compartments 

which contain other organelles and functional parts of the cell 

(Goodsell, 2009). This dynamism guarantees that, eventually, reactions 

will happen where they are meant to happen without the individual 

molecules being carefully guided from one place to another. This point 

to point guiding as we would see in a human factory for instance, does 

not happen inside cells except in certain special cases such as the 

“walking” of large structures along microtubules of the cytoskeleton by 

motor proteins.  

 

One could argue that despite the seeming complexity of these 

higher order behaviors, that faithfully simulating the atoms should 

permit these behaviors to simple emerge out of the low level 

interactions. However, as enumerated above, the sheer number of 

atoms and encounters and associations they are involve in, this kind of 

computation may be entirely intractable. Therefore many researchers 

argue for more coarse-grained simulation of molecular interactions in 

which, for example, a number of water molecules would be grouped 

together and simulated as one entity (Fellermann et al., 2007). We feel 

that the truth lies somewhere in between and that as is suggested in 

(Bedau et al., 2000), the useful simulation of biomolecules needs to 

flexibly employ low level fine grained representation for some purposes 
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and switch seamlessly to coarse grained representations at other 

levels. This is often called the challenge of multiscale multiphysics. 

 

We must also acknowledge that the simulation of whole 

environments is also important. For example, liquid water, whether it is 

in small surface ponds or at great depths near hydrothermal vents, is 

surrounded by complex substrates: the rock and sand of shorelines, 

the deposited minerals of vents, and the water-gas transition of liquid 

surfaces and bubbles of trapped gas. Molecules will be constantly 

interacting with other molecules in these phases, and making 

transitions between phases through dissolving, evaporating and 

condensing actions. To represent the solid and gaseous borders 

surrounding even the tiniest droplet in a pinhole in rock would require 

trillions of atoms. In addition there are energy gradients between 

sources and sinks. These gradients are key drivers in chemical 

reactions and in the motion of the medium and must somehow be 

simulated. Related to gradients are the vital influence of periodic 

effects that could arise from wave action, the day/night cycle or the 

action of geysers. 

 

An additional simulation challenge is related to simulation time 

scales. As we saw above, a few seconds may be important to model 

events in the life of a cell. A bacterium such as E. coli may have taken 

all the steps to perform a replication of its DNA in just about twenty 

minutes. Ecosystems shift in terms of energy, the flux of populations in 

hours to years. And evolution itself takes place on a scale of a few 

days for some single celled organisms to millions of years for larger 

animals or plants. However, actions such as the folding of proteins, 

catalysis of reactants and other biologically important activities take 

place in nanoseconds. Nanoseconds of chemical time can be 

simulated in hours to days of computer time for small volumes 

containing no more than a few thousand atoms (Shaw, 2009). Thus at 

these limited scales of both contents and time, there is a doorway into 

the world of the bio-molecules.  
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As is apparent from this brief overview, the computational load 

of simulating even simple bio-molecular mixtures in small volumes and 

over tiny time sequences (nanoseconds) is still very large. The 

computational complexity of simulating a complete living cell is frankly 

stupefying and well beyond the means of modern computing grids 

(Philips and Milo, 2009). However, the challenge we are setting here is 

to produce informative simulations of important prebiotic molecular 

processes and structures. Life’s origins are postulated to have 

occurred in a liquid medium containing a diverse range of small 

molecules (Deamer, 2011). Larger molecules emerged out of this 

milieu. So in fact there is a probable doorway into this world. One major 

cautionary note here is that the time scales for the emergence of large 

prebiotic molecules and reaction sequences is still intractably large for 

computer simulation. Nature possessed the “computer” of an entire 

planet, running every instance of every atom in parallel. Nature could 

afford many trial and error experiments in many environments. 

Therefore the challenge of simulating pathways from nonliving to living 

molecules must be broken down into a number of more tractable 

intermediate steps. These steps would involve a small number of small 

molecules over small time scales with a very limited representation of 

their environment (no solid of gas phases represented at all) and a 

simplistic energy input forming a trivial kind of source and sink, or at 

best, a functional gradient. 

 

2.1.3 Arriving at a Doorway of Tractability 
 

So we have arrived at the likely only tractable entry point to 

computational origins of life endeavours involving molecular simulation: 

the treatment of small volumes of bio-interesting small precursor 

molecules over small bio-relevant periods of time. What sort of virtual 

experiments can be carried out at this scale and which of these would 

be interesting to origin of life researchers? Deamer suggests that the 

formation of individual lipid molecules from the feedstock molecules 
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which could have arrived from meteorite impacts (Deamer, 2011, pp. 7-

22). The simulation of the formation of small micelles (Szostak et al., 

2001) and their contribution to the growth of a lipid membrane is also 

interesting. The arising of catalysts and autocatalytic cycles (Kauffman, 

1995) is also of interest and involves a tractable population of smaller 

molecules. Polymers and polymerases involved in the growth of 

replicable information molecules such as RNA may possibly be 

“shoehorned” into small simulation spaces (Deamer and Barchfeld, 

1982). Examples of these experiments and their applicability for 

simulation will be treated in more detail in Chapter 4. 

 

For the purposes of this thesis project of limited time and means 

we must take yet one more step down the ladder of tractability and 

recast our goals yet again, as: 

A realistic goal for this work is to produce a proof-of-
concept that simple molecules may be formed ab initio from 
simple tiny atomistic soups over small time frames. Those 
simple molecules could form the starting populations for later 
work. 
 

The use of an ab initio approach is a somewhat arbitrary choice 

on our behalf. The origin of life is a story of the origin of increasingly 

complex associations of atoms. While we could start our simulation 

with many small pre-formed molecules such as water, dissolved carbon 

dioxide or ammonia, amino acids or sugars, this would burden us with 

additional atoms to handle and the challenge of molecular affinities to 

compute. By starting with a simple soup of atoms we could observe the 

formation of primal virtual molecules without being concerned with the 

complex geometries of their shapes and interaction. Given such a 

simple starting point, we are forced to accept the few simple 

experiments that are possible. Two such experiments immediately 

present themselves, running tests where the “goal” is to measure the 

number of molecules formed, or to measure the size of molecules 

formed. 
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At this point the reader may be thinking: what is the use of 

carrying out such simple experiments? The answer is equally as 

simple: to provide proof-of-concept testing for a simulation platform in 

preparation for more ambitious future efforts. This proof-of-concept will 

make several contributions to knowledge for future efforts in simulating 

emergent biomolecular phenomena, notably: 
1. Demonstrate that the simulation of an artificial chemistry modeled 

on molecular dynamics can be cast into the form of a distributed 

grid of small volume simulations running on a network of 

computers, all managed centrally. 

2. Provide key tools which would provide optimizations, both saving 

computing resources and shortening the length of time needed to 

observe emergent phenomena of interest.  

3. Create an open system which allows researchers to add 

extensions to other types of simulation, including supporting 

multiple scales with multiple physics. 

 

2.2 The EvoGrid: Our Design Emerges 
  

With the major design choices and desired contributions to 

knowledge derived from the previous sections we are now in a position 

to propose the final form of the EvoGrid prototype. 

 

2.2.1 A Chemical Cameo Simulation 

 

Returning to our design for the first prototype of what we are 

optimistically calling the EvoGrid. Let us adopt the term cameo 

simulation to represent simulations comprised of no more than a few 

hundred or thousand particles representing atoms and small molecules 

running over short time scales and in multiple instances. As was 

suggested in the design exercise above, existence of those instances 

is governed by a search tree function which permits variations of initial 

conditions and the branching of multiple, parallel simulations. Variation 

of parameters and branching are under control of an analytical step 

which looks for interesting structures or behaviors within each cameo 
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simulation volume, which we call a frame. Frames deemed less 

interesting may be terminated so as to permit other branches to be 

explored to a greater extent. This approach is inspired by the class of 

genetic algorithms (GA) combined with hill climbing algorithms widely 

used in Artificial Intelligence (Russell and Norvig, 2003, pp. 111-114). It 

is a form of importance sampling (Kalos and Whitlock, 2008). 

 

2.2.2 Search Functions and Hill Climbing within Cameo Simulations 
 

With such a large number of small simulations running, it begs 

the question of which simulation is producing desired results and 

therefore should be propagated to permit the emergence of further 

variations. This question can most appropriately be addressed by some 

form of computational search. In recent years, search has become a 

highly developed branch of computer science. Search through large 

noisy data sets of signals from radio astronomy telescopes became the 

focus of one of the earliest massively distributed computing efforts in 

the 1990s: SETI@Home (Anderson, 2004).  Recently search has 

become widely used in dealing with vast quantities of text, images and 

other media on the World Wide Web. Search through the noisy content 

environment of web sites and social network traffic has now become an 

active area of study  (Champin et al., 2010).  

 

Search within AChems is less developed and as we have seen 

in the review in Chapter 1 tends to focus on identifying an occurrence 

or shape of a particular molecular structure such as a protein. In the 

most general terms what can be searched for in cameo AChem 

simulations are relatively localized “patterns in space and time” as 

defined in the Alife field (Langton et al., 1992). In the case of our 

design for the EvoGrid, search functions “score” and select frames of 

simulated atoms providing a pool of seed frames for another 

“generation”. So, current searches affect the generation of future 

content to be searched in a feedback loop. Such a loop is analogous to 
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a chemical reaction system which permits constructive growth or 

destructive degradation of sought after phenomena. 

 

Search functions in the EvoGrid prototype have the ability to 

branch new simulations based on scoring criteria. We use the term 

branch to describe the creation of new, optional simulations which may 

or may not be executed, or simulated, depending on selection criteria. 

These search functions are also able to implement back-tracking 

through stored scores from previous simulations to permit re-starting at 

a previously promising branch if the current frames are scoring poorly. 

As we shall see in Chapter 3, this back-tracking is implemented 

through the use of a degradation factor. In between every simulation 

step, the atomistic content of frames is affected by random effects 

including: the drifting of parameters, the adjustment of heat, the 

replacement of atoms with other types of atoms, and the breaking of 

bonds. Thus the objective function which defines the fitness landscape 

is dynamically changing that landscape with each application of these 

effects. Therefore we expect that our landscape should be rugged, 

(Figure 23), dynamic and that local maxima may be challenging to 

locate and to leverage into higher global maxima. 

 

Searching for optima within such a landscape can take 

advantage of a number of algorithmic methods belonging to hill 

climbing or simulated annealing methodologies. Hill climbing is well 

understood in computer science and comes in a variety of approaches 

including: “Simple Hill Climbing (first-best neighbor), Steepest-Ascent 

Hill Climbing (best neighbor), and a parent of approaches such as 

Parallel Hill Climbing and Random-Restart Hill Climbing” (Brownlee, 

2011, p. 39).  As we described earlier in the example of Darwin’s 

finches, hill climbing is a good metaphor for adaptation in complex 

natural systems (Kauffman, 1995, p. 154) yet hill climbing programs 

can be quite simple (compressed) while still achieving timely results.  
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Simulated annealing is a related method analogous to gradual 

cooling in which good local, or even global minima can be found 

(Kirkpatrick et al., 1983, Kauffman, 1995, pp. 249-252). However, 

simulated annealing techniques can be both computationally and time 

costly. One of the goals of the EvoGrid is computational cost and time 

savings. Therefore it is prudent to seek “good enough” but not 

necessarily “best overall” solutions which in AChems can quickly 

become NP-hard and un-computable within reasonable time frames. 

 

Without going into an exhaustive review of hill climbing 

techniques, let us describe the method chosen for this work: a form of 

stochastic hill climbing (SHC). Stochastic hill climbing is a method of 

hill climbing for navigating fitness landscapes which uses a local 

iterative optimization involving the random selection of a neighbor for a 

candidate solution but only accepting it if the neighbor is equal to or 

improves upon the current or parent solution. 

 

 
Figure 38 Illustration of stochastic hill climbing 
 

 Figure 38 depicts a cartoon representation of how a SHC might 

operate. There may be many pathways a traveler can take to a local 

maximum (the lower hill). The way up that hill looks somewhat like a 

random walk as the next steps are being examined at random but only 

taken if they are measured to provide equal or better upward 

placement (a gain in altitude) on the course. Once the maximum is 

reached the traveler will still be looking at random for a better next 
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step. Not finding one the traveler may remain stuck on the local 

maximum unless this version of the SHC incorporates some kind of 

degradation factor or back-tracking. If the traveler becomes frustrated 

by not finding any steps that take her higher, she may opt to accept 

steps with lower “scores” and take those for a while. Finding her way 

into the more level “saddle” area between the local maximum and an 

even higher maximum, the traveler continues along as she is also 

programmed to accept steps that are equal in altitude to her current 

step. Soon the traveler finds her way to ascending values once again 

and travels up to the higher maximum. 

 

What has been selected for the EvoGrid prototype could be 

termed “simple” stochastic hill climbing. Other more sophisticated 

implementations, including MIMIC by (De Bonet et al., 1997) discussed 

earlier, have explored more sophisticated hill-climbing techniques 

which involve correlating between paths. SHC was selected due to its 

relatively simple implementation and computational efficiency paired 

with a proven record of being able to scale multiple maxima on a 

rugged and changing fitness landscape. In the EvoGrid the fitness 

landscape will be changing with maxima growing and shrinking through 

time as the underlying objective function is changed. We felt that we 

would need an aggressive and fast technique to keep up with this 

dynamism. In addition, with the “state machine” being a volume of 

1,000 rapidly interacting atoms the search space for the maxima is very 

large and not easily characterized. All of these conditioned argued for 

simple, speedy mechanisms. 

 

We will now present a specific instance of search for a pattern in 

space within the EvoGrid’s implementation of cameo chemical 

simulations. To prove or disprove the hypothesis that search functions, 

which could be called a directed search can improve rates of 

emergence within cameo simulations, the EvoGrid prototype was 

designed to run in at least two modes, “control” (without search) and 

“test” (with search applied). 
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Figure 39 Illustration of the search tree method employed by the 
EvoGrid prototype 
 

Figure 39 illustrates our implementation of an SHC within a 

simulation of frames of particles. There are two execution sequences, 

the first being a control (A) which depicts a typical linear time sequence 

simulation of frames without search and the SHC applied. The second 

is the test case (B) which depicts the arising of simulation branches 

due to search and selection for in this case the emerging phenomenon 

of more densely interconnected points. This illustration also depicts the 

other optimization we are terming a degradation factor, or temporal 

back-tracking in (C). If the simulation states of each frame can be 

stored through time, then a failed branch having low scores may be 

rolled back to the point at which “interesting” frames were still 

occurring. With this starting frame a new branch is started. This branch 

may therefore yield an interesting phenomenon forgone in the failed 

branch. In the example that phenomenon might be a ring structure, as 
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shown in the frame with the check mark. In this way, improbable 

occurrences may be guided across valleys of high improbability. This 

technique for creating an “attractor” (Mitchell, 2009) for the formation of 

unlikely associations with higher likelihood is consistent with general 

ideas about the inexorable growth of complexity in physical and 

biological systems. 

 

2.2.3 Examples from Biochemistry 
 

 
Figure 40 Example search tree whose nodes contain the formation of 
an artificial catalyst 
 

Figure 40 depicts how this technique might be applied to a 

scenario in artificial chemistry, that of the emergence of a simulated 

catalyst. By knowing in advance about the geometry of active catalytic 
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regions of molecules, the system might determine a given emergent 

molecular structure is developing the characteristics of a catalyst. A 

catalyst is a molecule that can act as a kind of “clamp” to perform (by 

bending) the formation of a bond between two simpler molecules that 

have attached themselves to the active sites on the catalyst. On the 

leftmost branch our simulated catalyst persisted but not long enough to 

actually catalyze anything before being broken up. On the rightmost 

branch, through our SHC directed search, the catalyst existed long 

enough to catalyze one or more reactions. If we did not know about the 

active sites in advance, a search function might still have detected the 

signature of the products of catalysis, in this case the formation of a 

polysaccharide out of the products of catalysis. The lack of a priori 

knowledge is a handicap but not necessarily a show-stopper if there is 

some unambiguous signal to search for. In the catalyst example 

knowing the template for the active sites that will make a molecule into 

a catalyst will assist the hill climbing. Not knowing this information 

would require the system to simulate many more pathways. 

 

An extension to the detection of catalysts would be the detection 

of a whole network of reactions forming a so-called autocatalytic set 

(Kauffman, 1995) as shown in Figure 41 below. 
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Figure 41 The autocatalytic set 
 

In this kind of reaction, the catalyst is able to facilitate reactions 

that eventually lead to the creation of new copies of the catalyst itself, 

so the whole cycle can persist and cause the increase of population of 

the catalyst and a whole range of related molecules. It is thought that 

such autocatalytic sets or cycles were essential steps or ratchets in the 

origins of life. Observing the spontaneous emergence of such cycles in 

a molecular dynamics simulation would be a major result and be 

especially useful if they led to predictive models to develop these 

cycles in the laboratory. For this reason, this is one of the proposed 

future experiments presented in the road map in Chapter 4. 

 

2.2.4 How Cameo Simulations Might Support OoL Simulations: The 
Genes of Emergence 

 

Efforts to bridge nonliving and living matter and develop 

protocells from scratch (Rasmussen et al., 2003b) will rely on bottom-

up self-assembly with commensurate self-organization of classes of 

molecules. The development of repeatable self assembly experiments 

in silico could serve as an important aid to in vitro protocell research. 

Self-assembly in computer simulations may be purposefully designed 
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into the experiment or may be an emergent phenomenon discovered 

by a directed search through multiple trial simulations. The initial 

conditions for each simulation frame could be thought of as the coding 

sequences of a genetic algorithm (GA), and the simulation outputs 

seen therefore as its expressed phenotypes. The EvoGrid’s search for 

self-assembly and other phenomena in cameo simulations is therefore 

a search for what we might term genes of emergence (GoE). 

 

GoEs may be derived from within many different types of 

simulation, not just in the computationally intensive molecular dynamics 

(MD) world. More abstract simulation modalities may yield shorter 

pathways to the production of important emergent phenomena than 

through computationally complex artificial chemistries. The EvoGrid 

represents a “discovery system” operating on a continuum of 

techniques which might include: the execution of simulation modules 

that code for more tractable abstract universes yielding interesting 

results; to be then swapped out for a simple AChems within which we 

would hope to reproduce the results; and finally, carrying the GoEs one 

step further into high fidelity molecular dynamics which could make 

possible validation through full scale in vitro experimentation. 
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Figure 42 Illustration of the concept of cameo simulations feeding a 
larger composite simulation 
 

Figure 42 graphically illustrates an extension of our original SHC 

tree. SHC search functions represented here as trees process through 

a number of small cameo AChem simulations. The end points of these 

simulations (shown here as S1, S2 and S3) each meet some criteria for 

generating a structure or behavior of relevance to a larger composite 

simulation, Sc. In the next stage, the large simulation Sc is assembled 

from a mixture of content from each of the "feeder" cameo simulations 

and is driven by an amalgamation of the individual cameo simulation 

experimental parameters A, B and C. The hope is that this 

amalgamation in simulation Sc, running with a much larger content 

store and over more biologically significant time scales, would generate 

a rich mixture of phenomena, such as the formation of membranes, 

emergence of replicators, or the observation of autocatalytic reactions. 

It is this enriched simulation environment which could be the basis for 

more ambitious computational origin of life endeavors. In another twist, 

an interesting phenomenon observed in Sc could be captured, its 

parameters and local contents extracted and cameo simulations run to 

characterize and fine tune the phenomenon more closely. Re-inserting 
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the results of this “improved” sub-simulation may enable another 

ratchet in the emergent power of the larger simulation.  

 

Not surprisingly this is a method commonly employed in bench 

chemistry when more efficient reactions are sought: an iteration of 

feeder solutions is developed separately and then tried repeatedly 

together. An example of this is the famous ribozyme experiment by 

(Bartel and Szostak, 1993) which is described in more detail in Chapter 

4 of this thesis. We hope that this section has helped establish the 

value of search and hill climbing using small volume cameo 

simulations. 

 

2.2.5 Global Optimization Problem Statement 

 

Formally, the system is intended to solve a global optimization 

problem, which we will describe next. In summary and prior to 

describing the implementation of the EvoGrid prototype, let us 

summarize the overall properties of the simulation and optimization 

system we are seeking to build. The properties of the architecture and 

optimization system are as follows: 
1. The parameter space of the system consists of a series of 

volumes of 1,000 simulated atoms of discrete types (2 in the first 

prototype and 6 in the second). These volumes are of a dimension 

of 10nm on the side, for a total volume of 1000 cubic nanometers 

containing 1,000 atoms whose density varies slightly throughout 

the volume. Each atom has an initial randomly selected velocity 

and a specific bond outer threshold, Lennard-Jones force 

parameter and covalent bonding force parameter (as specified in 

section 3.1). 

2. Constraints applied to the parameter space include the limitation 

of heat (combined velocity of the particles) to the range of 300 

degrees Kelvin. Adjustments to the level of heat (the velocity of all 

atoms) are continuously made throughout the execution of 

simulations. 



 
 

 118

3. The objective (fitness) function is computed from a simple addition 

of the bonds formed between atoms during the execution of the 

simulation of a particular volume. The larger the number of bonds 

formed the higher the “scoring” or fitness is of any given 

simulation. Beyond this there is a quality distinction which creates 

two “experiments”: in one experiment fitness is measured by 

number of distinct molecules formed (bonds between two or more 

atoms) and in another the length of the longest bond within any 

molecule is the primary fitness measure (the molecular size). The 

utilization of these two variations on the objective function coupled 

with scoring and simulation prioritization is described concisely by 

the pseudocode listed in Table 4 in Chapter 3. 

4. The optimization method is a single (non hybrid) global 

optimization method employing stochastic hill climbing which is 

enabled by the processing of scored, prioritized simulation 

branches. Other methods such as simulating annealing, as 

described earlier in this section were considered to be too 

computational intensive to employ while the application of a hybrid 

approach combining gradient methods, genetic algorithms or the 

searching of distinct molecular populations could be a direction for 

future research. 



 
 

 119

2.3 The Architecture of the EvoGrid Prototype 

 

 
Figure 43 High level design and data flow of the EvoGrid shown in 
block diagram format 
 

We have finally arrived at the point of having sufficient design 

principles and goals established for the first experimental prototype of 

the EvoGrid to be sketched out as software and hardware architecture. 

As depicted in Figure 43, the modular design of the EvoGrid 

encapsulates in its Simulation Cluster an MD simulation engine, in this 

case version 3.3 of GROMACS (van der Spoel et al., 2005), which we 

found to have good and stable performance on individual computers 

and was suitable to run as a plug-in component. It should be recalled 

that GROMACS was also used as the distributed MD engine on the 

Folding@home projects (Pande et al., 2003) described in Chapter 1 so 

comes with some pedigree. In their open questions in artificial life 

(Bedau et al., 2000) stated that combinations of different simulation 

approaches might be a pathway to significant progress. We therefore 

designed the EvoGrid framework such that GROMACS could always 

be swapped out for other suitable simulation systems or that the 

framework could support many simulation engines running in parallel 

on the same data sets. Other components depicted in the figure 
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include an Analysis Server and an Analysis Client. Both of these 

components process inputs and outputs to the Simulation Cluster using 

the compact JSON format. 

 

 
Figure 44 Lower level sequencing of data types through the EvoGrid 
with an emphasis on stepwise simulation 
 

Moving to a view of the step-by-step flow of activities in Figure 

44 we see that the Simulation Manager running via HTTP/Web 

services sequences the simulation analysis of individual frames. MD 

simulations typically have heavy compute loads in executing the time-

steps for each force interaction of the artificial atoms. In the EvoGrid, 

hundreds of thousands of these time-steps are being executed and 

future computing frames are replicated through new branches. This 

process can generate terabytes of stored states for analysis. This could 

eventually call for a fully distributed simulation network, such as 

provided by the BOINC network (Anderson, 2004). BOINC supports 

many computationally intensive scientific applications, similar to 

Folding@home (Pande, 2011). However, at this time we are relying on 

the centralized analysis server.  
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2.3.1 Detailed Implementation 
 

In the previous sections we detailed both a high level 

architecture and preliminary results from the EvoGrid prototype. In this 

section we will provide insight into the code-level design 

implementation of the prototype. 

 

Simulation Manager 
 

The simulation manager (SM) acts as the central data 

distribution point for the batch processing. The SM uses HTTP for 

communication, and provides either human readable XHTML or 

machine readable JSON. The SM shown in functional block format in 

Figure 44 accepts, stores and provides: 

• Specification for pending simulation jobs 

• Histories of completed simulations, for processing by analysis 

functions 

• Statistics generation by analysis functions, for processing by 

searching functions 

• Scores generated by both analysis functions and searching functions. 

 

Due to the amount of data being stored and transmitted, the 

hardware requirements for the SM include large disk drive capacity for 

file storage, and database storage. The SM provides a method for 

daemons (software agents) to request “pending” variations on data to 

be processed. This allows the SM to select what order data should be 

processed in. To date, the selection method used computes the 

ordering by the “priority” property, followed by random selection from 

the pool of frames with the highest priority. 
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Figure 45 EvoGrid data type hierarchy 
 

Statistics and scores are currently accepted in an open format in 

that any statistical score and naming convention can be used and this 

will be automatically added to the storage database. If there are no 

pending simulation specifications, then the SM generates new ones, by 

providing random parameters. The random parameters include the 

number of atom types present in the simulation. In the first prototype 

this seed generation was the only point capable of varying the number 

of atom types present. 

 

Figure 45 illustrates the SM Database Schema and is useful to 

understand objects being managed and transacted. The simulator 

component retrieves pending simulation job specifications from the SM, 

performs these jobs and submits the history back to the SM. For a 

more exhaustive explanation of these data types see Appendix C. 
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Figure 46 A view of the high level architecture of the EvoGrid 
 
Figure 46 is a final look at the high level architectural components of 

the EvoGrid prototype. The EvoGrid is built upon an open source, 

published framework to allow a future community of researchers to 

extend it and the source code is published on the EvoGrid project web 

site (Damer et al., 2011a). See Appendix C: Detailed Implementation 

and Source Code Examples for detailed code and Application 

Programming Interface (API) level execution of the Simulation Manager 

and clients.  

 
2.3.2 Target Chemical Model for the EvoGrid Prototype 
 
 

One final step remains in our design exercise: setting a realistic 

target chemical model for the first EvoGrid prototype to simulate. Due 

to the severe constraints on this first prototype we will be well advised 

to limit ourselves to the most basic of chemical models: that of a highly 

diffuse atomistic gas, that is, a cubic volume composed entirely of 

unbonded atoms. David Deamer suggests that the EvoGrid prototype 

might represent a first step toward modeling the interstellar medium 

(Deamer and Damer, 2010b). Deamer describes this medium as “a 
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mixture of elements in the gas phase, such as hydrogen, helium, 

nitrogen, oxygen, and sulfur; simple compounds like water and carbon 

dioxide; dust particles composed of silica… and metals like iron and 

nickel” (Deamer, 2011, p. 18). So it is suggestive that the prototype 

models the first items on this list, a mixture of elements in the gas 

phase. In terms of origins of life research it could be useful to 

implement a crude emulation of the behaviour of a diffuse atomistic gas 

similar to the interstellar milieu from which the first organic compounds 

formed. It is understood by astrophysicists and astrobiologists that this 

milieu is the source for the compounds for the formation of stars and 

planets (p. 19) including the feedstuffs for living systems. 

 

2.4 Comparable Work to the EvoGrid 

 

Other recent and active projects using techniques comparable to 

the EvoGrid are explored next. In the scientific and hobby communities 

there have been numerous simulation systems constructed using 

various levels of abstraction in artificial chemistry. Many of these 

systems use naïve chemistries and have pre-built objects designed to 

express some aspect of a living system. Some systems run on a single 

computer and others can be distributed. Many of these systems rely on 

the operator to detect “interesting phenomena” visually, while others 

implement some sort of automated search. Indeed, since Barricelli’s 

Numerical Symbioorganisms in 1953 and Conway’s Game of Life 

described in the Introduction, this class of software has become one of 

the most creative exploratory uses of computers. Winnowing down to a 

few projects in the serious research space Table 2 lists other projects 

using comparable techniques to study origins of life or emergent 

phenomena.  
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Project AChem model Goal Status 

Folding@home 

Pande et al. 

Stanford Univ. 

MD-GROMACS 

Massively 

distributed 

Folding of 

molecules 

Active research 

tool 

FLiNT 

nanocell/protocell 

Fellermann et al. 

Univ S. Denmark 

Custom coarse 

grained DPD on 

single processor 

Emergence of 

lipid nanocells to 

simulation of 

FLiNT protocell 

Development to 

work with 

LAMMPS and 

possibly EvoGrid 

GARD 

Lancet et al. 

Weizmann Inst. 

Stochastic-MD 

Hybrid in MatLab 

on single 

processor 

Monomers 

joining and 

leaving 

composomes 

New version in 

development, 

possibly with 

EvoGrid 

Avida-derived from 

Tierra 

Offria et al. 

MSU 

Assembler 

Automata 2D 

Lattices 

distributed 

Study of artificial 

evolution 

Active 

development 

and use in 

research 

Squirm3 

Hutton 

Abstract CA on 

single processor 

Emergence of 

replicators from 

random soup 

Active project as 

Organic Builder 

network app. 

Table 2 Listing of projects comparable to the EvoGrid 
 

Perhaps the closest work to this effort in terms of the tools 

employed is the Folding@home project extensively discussed in 

section 1.2.3. This project employs the GROMACS MD engine 

selected for the EvoGrid but not in an “emergent” mode of new 

molecules forming as in the EvoGrid. Instead, Folding@home is using 

a large number of distributed copies of GROMACS to compute how 

large molecules, specifically proteins, fold. Folding@home is a 

successful endeavour with a continuous stream of discoveries, network 

growth and usership and publications (Pande, 2011). 

 

The FLiNT nanocell simulation developed by Harold Fellermann 

(Fellermann et al., 2007) is described in detail in section 4.2.1 in 

Chapter 4. This system is also close to our work on the EvoGrid and 
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was in fact one of the inspirations of this effort. Fellermann developed a 

custom coarse grain dissipative particle dynamics (DPD) simulation in 

which the formation of small lipid droplets with attached surfactant 

could be automatically searched for and identified within frames of 

simulation running on a single processor. Active discussions with the 

FLiNT group are proceeding as to how to bring Fellermann’s work into 

the EvoGrid framework. Where the nanocell simulation differs from the 

EvoGrid is that atom to atom reactions are not performed and the 

environment runs on a single computer for short periods of time under 

operator control. 

 

The Graded Autocatalysis Replication Domain (GARD) statistical 

random chemistry framework (Shenhav and Lancet, 2004) described in 

Chapter 1 is also closely aligned with our current efforts with the 

EvoGrid. These authors have developed a hybrid scheme merging MD 

with stochastic chemistry and run simulations in the MatLab® package. 

GARD explores rates of monomers joining and leaving assemblages to 

study the evolutionary lifetimes of composomes. Exploration of 

methods to run GARD as a simulation within the EvoGrid framework 

has recently been undertaken. 

 

Avida (Ofria and Wilke, 2004), currently being developed at the 

Digital Evolution Laboratory at Michigan State University, is an 

example of an “assembler automata” system. In such systems agents 

are defined by simple instruction sets acting on local and common 

memory.  Any type of object can be defined as can rules of interaction 

such as emulations of inter-atomic forces and bonds. Avida has had 

some success modeling genes, gene expression and populations of 

simple agents that show some of the dynamism paralleling populations 

of E. coli. 

 

Independent researcher Tim Hutton developed squirm3 as a CA-

based environment to study minimal evolvable self-replicating virtual 

molecular structures roughly analogous to DNA or RNA. The project 
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has recently been recast as the distributed open Organic Builder 

framework (Hutton, 2007). 

 

Conclusion 

 

In our search of the field we have found no exactly comparable 

project and implementation to our efforts, which are: the distributed 

simulation of molecular dynamics volumes using search stochastic hill 

climbing to optimize the de novo emergence of bond formation. 

 
2.5 The EvoGrid: Answering Questions of Teleology and 
Intelligent Design 
 

The creators of the EvoGrid cannot easily rebut any criticisms of 

“intelligent design” as with any software system it was indeed 

intelligently (or at least we hope competently) created by the hand of 

programmers. That said we strove to build a system in which, once the 

initial conditions were established, the complexity we hoped to observe 

would automatically emerge without interfering hands. This kind of 

emergence is a commonly sought after goal in work in many simpler 

artificial life systems (Sims, 1991, Ray, 1991) but has not often been 

attempted in chemical simulation.  

 

The EvoGrid is a project to construct and test an exemplar 

emergent system and using common tools from the chemical 

simulation field of molecular dynamics and by extension other artificial 

chemistry systems. In this instance of our design of the EvoGrid 

prototype what will be driving complexity forward is random chance. 

Random chance will occasionally produce better results, and these 

better results are automatically “found” and “prioritized” using the 

search functions introduced above. For example, in a possible early 

prototype if our search scores are to be based entirely on, say, the 

formation of bonds we would simply select simulations where more 

bonds randomly form than are destroyed. What drives the formation of 

the simulation volumes themselves is therefore at least partly a random 
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process. What permits those volumes to be selected for future 

processing would also be driven by random chance. To a great extent, 

this kind of experimental design parallels the day to day work in bench 

chemistry: experiments are carried out in small volumes in large 

numbers, sampled and analyzed and a few experiments selected to 

carry on, being replicated in large numbers for the next “batch”. This is 

sometimes termed “enrichment sampling” (Kalos and Whitlock, 2008) 

and is a common technique used in the discovery of new compounds. 

 

A final point of design emerges from our quest to build a “black 

box” system to minimize operator bias. To do this our design should 

not code logic to force more bonds to form or directly influence the 

formation of more bonds. We would design the system to prioritize 

limited computer and simulation time to randomly generate conditions 

encouraging or presenting pathways to the behavior we were 

interested in. Each branch therefore retains equal likelihood of being 

selected, or "happening". In other words, the system should not create 

more bonds because we desire more bonds. Instead the design of the 

system would support the varying of the conditions that lead to fewere 

or more bonds forming. Along the way, random observations would 

determine whether the system is automatically following these 

conditions to produce higher scored frames. In no way should the 

system (or the user) know ahead of time which changes were going to 

result in higher scores or not, and thus the system should not be able 

to direct the occurrence of these higher scores.  In other words, we 

believe that the EvoGrid prototype, even though it is a designed 

system, should permit the emergence of unpredictable phenomena 

which, rather than being completely random, should permit some 

learning about the nature of operating complex, chemically inspired de 

novo simulations. It is this class of simulation which will be of value to 

origins of life endeavours. 
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Summary 

 

This chapter established the connection between the cognate 

fields, prior art and limitations of current computing systems and a 

viable architecture and approach to support the construction of a 

prototype EvoGrid. Specific mathematical approaches (the use of 

stochastic hill-climbing), molecular dynamics simulation engines 

(GROMACS), and distributed software architectures and open 

protocols (web/HTTP and JSON) were proposed. An approach utilizing 

search, scoring, back-tracking, and the random selection of frames was 

fit into a tractable computing model of “frames” of 1,000 virtual atoms 

and naïve bond formation. Lastly, concerns raised by the use of a 

teleological approach (a search function with end goals) were 

addressed. In actual fact, the real proof of the property of emergence 

within the EvoGrid will come with the running of actual experiments, 

which will be detailed in Chapter 3. 
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Chapter 3: The EvoGrid Prototypes: Implementation, 
Testing and Analysis 
 
Introduction 
 

In 2008 a small team at the author’s company, DigitalSpace, 

working with the guidance of an energetic international group of 

advisors, undertook to build the first version of the EvoGrid which was 

called Prototype2009. Prototype2009 began preliminary trial operations 

at the end of 2009 and results were reported in a paper accepted for 

peer-reviewed publication in the proceedings of the Artificial Life XII 

conference (Damer et al., 2010). In early 2010 the next variant, 

EvoGrid Prototype2010 was produced and undertook several longer 

experimental runs in 2010 and again in 2011. We will present and 

analyze the results from both prototype variants in this section. 

 
3.1 Implementation of EvoGrid Prototypes and GROMACS 

 

The 2009 prototype of the EvoGrid was developed as a proof of 

concept of the architectural design detailed in Chapter 2. Many of the 

components described in Chapter 2 were implemented. What was not 

implemented was the storage of the state (atom and molecule position 

and velocity) of each simulated volume, or frame. State storage was to 

be implemented subsequently in Prototype2010. Without the ability to 

engage in re-starting simulations using prior states, the simulation 

frames began with an identical population of one thousand atoms of 

two kinds (Hydrogen, and Oxygen) which could all be simulated by 

GROMACS. The sole method to introduce variation into the simulation 

was the restarting of computing on a newly generated random frame 

with a drift of global parameters to GROMACS. 

 

It is beyond the scope of this thesis to describe the internal 

operation of GROMACS in detail, as we are treating GROMACS as a 

“black box” in the development of our architecture and the testing of 

our optimization. However, for future reference it is still valuable to 
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enumerate the parameters we set for GROMACS during each frame 

computation. Global parameters included: 

• Density in particles per Angstrom3 with a range of: 0.01 - 0.1. 

• Temperature in Kelvin with a range of: 200 – 300 deg K, used 

for initial velocity and temperature bath. 

• Bond outer threshold in Angstroms with a range of: 0.1 - 1.0 

Angstrom distance, used for bond creation. 

 

The minimum computational unit consisted of frames of 1,000 

simulated atoms which were run for 1,000 time steps of one simulated 

nanosecond each within the GROMACS engine. Random starting 

contents of the two atom types were generated for each simulation 

frame. All their parameters (mass, charge, force interaction with other 

types, radius and volume) were selected from a uniformly distributed 

random range. For Prototype2009 we employed notional atoms which 

incorporated the properties of Oxygen and Hydrogen when in a diffuse 

environment. 

 

Forces between atom types included pre-computed components 

of the Lennard-Jones force function which was described briefly in 

Figure 28 in Chapter 1: 

• c6      0.0 - 0.1 

• c12     0.0 - 0.00001 

 

Covalently bonded atoms included the following parameter 

ranges: 

• rA      0.0 - 2.0 

• krA     0.0 - 2.0 

• rB      0.0 - 2.0 

• krB     0.0 - 2.0 

 

An initial series of tests were carried out in late 2009 and early 

2010 on a single running instance of GROMACS on one computer with 

the simulation manager on a second networked computer. When a 
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bond was created, the Lennard-Jones forces would cease applying and 

no new forces were applied. This was done to minimize real world 

constraints prior to having access to a better technology supporting 

covalent bond computations. Our bond formation code, applied to post-

processed histories after each simulation, was extremely naïve and led 

to the easy formation of frequent bonds. In both Prototype2009 and 

Prototype2010 atoms are bonded if they lie close to one another (that 

is within the van der Waals radius of each other) in each of the 1,000 

state snapshots in an executed simulation. Atom placement results 

from GROMACS simulating the relevant interaction energies for each 

snapshot, done within its own internal 1,000 time slice execution which 

creates each stored state. In Prototype2009 if each frame was not 

reset back to an atomic soup between runs, the system would have 

rapidly generated a single linked super molecule of all 1,000 atoms 

akin to a crystal lattice. The main focus of both prototypes was to be 

able to test the architecture, not faithfully simulate any kind of accurate 

chemistry. 

 

As mentioned previously the position and velocity data was 

dumped every 1000 cycles and a naïve bonding applied to all atoms or 

atom-molecule or molecule-molecule objects. After a thousand of these 

dumps, this collected history was processed by the analysis server. To 

determine if a bond should be formed, forces between each type of 

atom were extracted from the GROMACS export: 

• c16 - Lennard-Jones force parameter 

• c12 - Lennard-Jones force parameter 

• rA - Bonded force parameter 

• kRA - Bonded force parameter 

• rB - Bonded force parameter 

• kRB - Bonded force parameter 

 

The proximity of the notional atoms sitting within their mutual 

bonding radii but also having a sufficient velocity to satisfy bonding 

force requirements determined if a bond was formed. This is a very 
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naïve method of determining bonds akin to magnetic attraction 

between steel balls rolling about on a flat table, some repelling each 

other and some forming bonds given sufficient contact momentum. In 

this model there is no differentiation between types of bonds formed, 

whether they were covalent, ionic or more subtle affinities. This 

accuracy and subtlety could be achieved with the future application of 

quantum mechanical calculations, which was well beyond the scope of 

this work. 

 
Measured values Final simulation scores 
Average molecular size 2.2303 
Maximum average molecular size 4.47307 
Average maximum molecular size 9.355 
Maximum individual molecular size 17 
Final maximum search score 33.0584 
Table 3 Scoring produced by prototype analysis server for the final 
simulation frame 
 

Once a bond-forming process was executed on a given frame, 

the score for that frame could be computed.  Table 3 represents the 

scoring for frame number 144,204, the highest scored frame in our 

Prototype2009 “test” case trial run (see (B) from Figure 39). This was 

from 236 simulations processed between December 14, 2009 and 

February 1, 2010 with 179,636 abandoned. The analysis and search 

function were set up to select for the formation of “larger” virtual 

molecules, which in our simplistic implementation meant a simple count 

of the greatest number of bonds joining any two atoms. Employing 

stochastic hill climbing methodologies, the maximum search score 

reached in the trial was the number 33.0584, a simple sum of the 

entries in Table 3. Note that all average values are calculated over the 

1,000 time steps in each simulation. The maximum individual molecule 

size achieved in this frame was 17, which suggests a long string of 

interconnected atoms. No attempt to visualize this structure was made 

because the molecule was considered so unrealistic as to have no 

correspondence with real world chemistry. Our bond formation was so 

naïve that many such large notional molecules were formed in many 
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frames. We planned to improve this process for Prototype2010 to come 

closer to a more realistic chemistry. 

 

If the analysis showed the generation of a sought-after property, 

in this case an improving frame score, then new simulation branches 

were created. Each time this happened, three new branches were 

made inheriting the same global GROMACS parameters (density, heat, 

bond outer threshold) except that for each branch one parameter was 

changed, drifting either plus or minus one percent of value. Next, for 

each branch the per-atom global parameters were not changed; 

instead one atomic mutation (change in type of atom) was made within 

the simulation volume. In addition, for each branch the ratio of the two 

atom types was also mutated with each atom's ratio value randomly 

changed by plus or minus ten percent then the ratio was normalized. 

Note that none of these branches were actually simulated by 

GROMACS until randomly selected.  

 

3.1.1 A Key Operational Concept of the EvoGrid: Loose Coupling 

through Random Selection Yielding Emergent Phenomena 

 

This creation of a large number of possible branches but only 

randomly selecting one of them to simulate is a core concept of the 

EvoGrid design and its use of stochastic hill climbing. This random 

selection permits the environment to support “innovation”, i.e.: the 

system has leeway to “find its own path” by virtue of being loosely 

coupled to the teleological end goal suggested by the search function 

definition. If the search function having selected a promising frame for 

the creation of future branches, also had a role in selecting which of the 

next branches to simulate, then the system would simply be driven 

deterministically toward the teleological end goal. If the search function 

or logic of any kind had “driving authority” over any frame, it is likely 

that the computational load would be vastly increased, as many more 

branches would have to be preemptively explored to determine their 

suitability. In a loosely coupled system we lose the efficiency of always 
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finding the best branch to take in any situation but we also drum out a 

great deal of the potential rigid determinism (and computational cost) of 

the system. In a simulation supporting the de novo emergence of 

phenomena we always hope to be “surprised” by results. Another way 

to think of this is: we must apply some portion of influence to set the 

stage for the observation of some amount of emergence. One 

consequence of this design is that a large number of branches are 

created and stored on a “stack” or in a “queue” for later processing 

(simulating) but only a few of these branches are actually turned into 

new simulation frames and executed. 

 

An example from the author’s previous experience working in 

computer networking could help make this concept clearer. In the 

1980s IBM’s Token Ring network technology was competing with 

Xerox’ Ethernet. Token Ring employed a deterministic approach 

wherein a token was passed around the network giving a computer 

permission to write to the network channel. Computers would have to 

wait for possession of the token to be able to write and were also 

locked in to polling the network to look for traffic destined for them. 

Ethernet on the other hand relied on the simple rule that computers first 

attempt to write to the network channel when they need access and, if 

they find it busy, simply wait a short but random amount of time and 

then try again. Token Ring was a tightly coupled architecture and 

Ethernet a loosely coupled one. In all tests at the time, Ethernet came 

out ahead in terms of performance (efficient utilization of the network, 

and scalability) while Token Ring was faulted for inflexibility, network 

delays and extra overhead supporting the control of the network 

resource itself. Thus, the core simulation scheduling function of the 

EvoGrid implements an Ethernet-style loose coupling with a random 

selection of branches to simulate, and the ability to retry and back track 

and simulate unprocessed branches if need be. As we shall see from 

the results of Prototype2010, this “random selection and retry” gives us 

the benefits of the stochastic hill climbing that not only allow the 

simulation to climb to ever higher local maxima but we also opt out of 
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having to convert most of the branches into computationally costly 

simulations. The above model is a crude approach to navigating the 

dynamic and chaotic nature of real chemical systems. We now turn our 

attention to a more detailed analysis of the results from Prototype2009. 

 

3.2 Results from the EvoGrid Prototype2009 

 

3.2.1 The “Control” Case of Prototype2009 

 
Figure 47 Scoring of experiments in “control” mode with no search tree 
function and random seeding 

 

Figure 47 shows the “control” case (reference (A) from Figure 

39) in which 73 frames were simulated with a randomly seeded 

restarting of GROMACS running for one thousand internal simulation 

steps to compute all atom-atom interactions and producing one 

thousand state dumps for analysis. As we can see, while there were 

some highly scored frames (red line), there is no maintained trend. 

Note that the missing lines indicate 31 simulation cases where our 

software generated impossible simulation configurations (atoms placed 

in the same position for example) and the execution was halted. This 

illustrated an area for improvement of how we were operating the 

GROMACS engine. 
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3.2.2 The “Test” Case of Prototype2009 

 
Figure 48 “Test” run showing trend toward higher “fitness” utilizing the 
search tree function 

 

In Figure 48, the “test” case applied the search function over 

236 completed simulations (with 10 halted and 179,636 abandoned, 

i.e. never simulated), and shows that the initially high value produced 

by the same starting frame generated for the control case is now 

improved upon over time. The strength of the search function and hill 

climbing is that subsequently generated frames eventually climb to a 

higher score-generating capacity, or fitness, over randomly generated 

control case frames. The search function will restart with lower 

performing simulations if all the potentially better options are 

exhausted. A record of these earlier simulations is stored as a linear 

stack of exported data. This is a crude implementation of back-tracking 

specified in our original design as shown at (C) in Figure 39. As seen 

in Figure 48, this back tracking allows the system to tolerate and bridge 

over a period where the evaluated simulation fitness (blue line) remains 
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less than the best observed fitness (orange line). In this manner, the 

search function is operating as a stochastic hill climbing algorithm in 

that the system has the ability to find its way out of traps set by local 

maxima. 

 

For further detail Figure 49 illustrates the underlying score of all 

components making up the summed scores in Figure 48.  

 

 
Figure 49 Components of the molecular size experiment simulation 
results 
 

The seed sources of pseudorandom numbers generators in the 

system should be clarified. The random number seed used during the 

GROMACS simulation was generated using the mk_seed function 

provided by the GROMACS API. The simulation manager’s random 

selection of which generated branch to simulate employed the MySQL 

RANDOM function, without specifying a manual seed. 



 
 

 140

 
Figure 50 Inheritance hierarchy tree for Prototype2009 test case 
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Another view of the data from Prototype2009 is shown in Figure 

50. This “inheritance hierarchy tree” (sometimes called a generation 

hierarchy) representation shows lines moving out from central “seeder” 

nodes representing simulation frames. The destination points of these 

lines are child frames that the system determined should be computed. 

The scores determined for frames are shown in each node. Nodes with 

zero or negative scores were the result of the failure of the simulation 

of the frame due to crashes or other anomalies that caused 

GROMACS to return null or unpredictable (negative) values. We simply 

discarded these frames.  

 

 
Figure 51 Starting seed simulation Random frame and immediately 
generated branches 

 

Area (A) in the inheritance hierarchy of Figure 50 is extracted 

and presented in Figure 51. This is the area around the initial node, 

here labeled Random. Valid child nodes show that the scores are 

climbing toward a high of 22.1468 in the upper left corner. From that 

point, an arrow departs upward to a new cluster of nodes. 
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Figure 52 Final high score node in inheritance tree 
 

Jumping to the topmost part of the tree, we can see in Figure 52 

from the extracted region (B) shows that after wending its way through 

a number of hills and valleys of scores, the system has generated the 

frame with the top score of 33.0584 (center) and no higher scored 

successor frame is generated. We arbitrarily stopped the experiment 

just after this event to collate the data. It is important to note that many, 

many frames which were a part of declining score branches are not 

shown. Indeed, with almost one hundred and fifty thousand branches 

generated by the system, only a small fraction were selected by the 

search function for processing as simulations. This represents a gain in 

computing efficiency and reduction in time as a more deterministic 

system may well have sought to process more of these branches. 

Building an alternative system to carry out this more deterministic 

operation might be a good test, or additional control on these 

experiments, but it was beyond the scope of this work. 
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3.3 Design Implementation of the EvoGrid Prototype2010 
 

The second EvoGrid prototype version, called Prototype2010, 

was put to the test in the summer of 2010. The major change from 

Prototype2009 was that the full state of each frame (atoms, molecules 

and their properties) were now being stored and able to be loaded back 

into GROMACS for continued execution. For the first experiments with 

Prototype2010 our simple simulations consisted of a random soup of 

six types (Hydrogen, Carbon, Oxygen, Nitrogen, Sulfur and 

Phosphorus) of one thousand notional atoms. These atoms were run 

through a hypothetical one thousand nanoseconds of simulation units 

using distributed copies of the GROMACS molecular dynamics engine 

running on a half dozen Intel dual core servers.   

 

The six atom types were chosen for their key role in biology but 

this is, however, by no means a complete accounting of all bio-

important molecules. From a definition of the term abiogenesis 

(Wikipedia, 2011) we note the proposed presence of our six chosen 

elements in the atmosphere of the early Earth: 

Some theorists suggest that the atmosphere of the early 
Earth may have been chemically reducing in nature composed 
primarily of methane (CH4), ammonia (NH3), water (H2O), 
hydrogen sulfide (H2S), carbon dioxide (CO2) or carbon 
monoxide (CO), and phosphate (PO43-)... 
 

Overseeing this process was a newly upgraded EvoGrid 

simulation manager with web-based administrative interface built into 

the Nagios environment. In addition, a publicly available simulation 

experiment web interface was produced enabling constant monitoring 

of EvoGrid experiments. See the simulation manager overview in 

Figure 53 and Figure 54, and a chart from an individual experiment in 

Figure 55 below. 
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Figure 53 Simulation Manager web monitoring interface (top level) 
 

 
Figure 54 Simulation Manager monitoring interface showing processed 
and abandoned simulations per experiment along with aggregate 
scores 
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Figure 55 Simulation Manager monitoring interface showing individual 
performance graphs per experiment (in this case average minimum 
bond distance in Angstroms) 

 

Other improvements in Prototype2010 included the 

implementation of two search functions, programmed to score and 

select the frames which had a superior outcome based on one of two 

predetermined criteria. These search functions therefore created two 

“experiments”. The first experiment sought to observe the increase of 

the richness of the simulation volumes by selecting frames having 

larger numbers of molecules, given that a “molecule” in this case is two 

or more bonded atoms. The second experiment searched and selected 

for frames which formed more large molecules, defined as molecules 

with the longer interconnections between member atoms.  

 

This is a teleological approach in which desired goals are 

encoded by search, scoring, branch generation, and random selection 

mechanisms which are set up by human operators. The experiments 

are operated without operator interference with the hope of being able 

to eventually observe the emergence of a sought-after phenomenon. 

Searching and selecting is done by parsing periodic file “dumps” of the 
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simulation state to minimize influence and therefore bias on the actual 

operation of the molecular dynamics simulation. It is hoped that the end 

goals will be met by the system, although this is by no means 

guaranteed. It is held that nature (excepting the human faculty of 

intelligence) does not operate in such a goal-setting fashion (Dawkins, 

1986). Experimental bench chemistry as does much of science and 

engineering operates with goal setting and iterative testing and it is 

likely that any effective de novo chemical simulation system would 

have to be structured in this same fashion. 

 

3.3.1 Description of the Frame Volume Simulation Experiments 

 

The following steps summarize the implementation of 

Prototype2010. The starting conditions and actions surrounding the 

simulation “frame”, a three dimensional volume of six kinds of randomly 

placed atoms, are as follows:  

 
1. The size of the simulation space is calculated based on the 

number of atoms to be simulated and an arbitrarily chosen density. 

To be able to simulate 1000 atoms with a density of 0.001, or 1 

atom every cubic nanometer, we simulate a cubic volume of 10nm 

on the side. 

2. A “heat bath” is applied, again through GROMACS, using an 

arbitrarily chosen initial temperature of 300K, roughly room 

temperature. We also set random initial velocities for the 

constituent atoms. The formulas for the calculation of these 

velocities are listed in Appendix C.2. Note that as with 

Prototype2009, the use of a thermostat for periodic “damping” of 

heat due to the over-excitement of the simulation resulting from 

our naïve bond formation was required. We maintain this “heat 

bath” at each iteration of a simulation and therefore bound the 

specified average atom velocity by scaling the velocities of all 

particles. In a simplistic way this introduction of heat and 

subsequent damping creates a crude source and sink of energy 
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(with no spatially defined gradient). The implementation of more 

sophisticated gradients is a goal for the future listed in Chapter 4. 

3. We then generate the GROMACS-specific data file using the 

default values generated by the GROMACS API. The GROMACS 

engine then runs this instance of the space for 1,000 nanosecond 

“clock ticks” of chemical time. 

4. We then apply searching and scoring with the evogrid-search-

2010 functions which are described with source code listing in 

Appendices C.6 and C.7. The functions are: priority_simple which 

is used for Experiments #1 and #2; and prriority_generation which 

is used for Experiments #4-7. 

 

3.3.2 Software in Operation – Core Pseudocode 
 

To reiterate, the following pseudocode (Table 4) represents a 

high level description of the Prototype2010 operation of all test 

experiments. 

 
   Top: 

Calculate Fitness Score of completed simulation 
 
For exp 1,2, priority_simple function: 
  Set Priority = Fitness Score 
 
For exp 4,5,6,7 priority_generation function: 
  selection_daemon On 
  If experiment 4,5 
     Set selection_daemon Off 
 
  Retrieve Parent Priority 
  Retrieve Parent Fitness Score 
 
  Set Priority = Parent Priority *  
        (0.9 * exp( Fitness Score – 

  Parent Fitness Score ) ) 
  
 For all simulations 

   Simulate 
   Branch 
   If selection_daemon On 

Randomly select highest priority branch 
Simulate 

 
   Goto Top 
Table 4 Core priority setting simulation code for the implementation for 
all test experiments. 
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The pseudocode for the “control” Experiment #3 follows below: 

   Top: 

Simulate 
Branch 
Simulate purely random chosen branch, giving no 
priority to earlier/later/complex/simple 
simulations. 

   Goto Top 
 

3.3.3 Operation of Core Priority Setting Simulation Code 

 

First, the simulation manager selects an un-simulated frame 

from the current experiment. The un-simulated state is determined by 

not having any associated history (stored frame state). This selected 

frame is randomly chosen from the branch members that have equal 

highest priority. 

 

By following this process, any branch that increases in fitness 

will have increasing priority. When fitness ceases to increase, the 

priority will decrease over generations, as each branch is simulated. 

When the priority is lower than at a point "earlier" in the tree, that point 

will have the highest priority and is what will be simulated. 

 

The score, or fitness, of a frame cannot be known before it is 

simulated. But the fitness of the preceding (parent) simulation is 

known. Eventually by simulating branches, a point will be reached that 

has a lower fitness (and priority) than a previously simulated 

simulation. 

 

Each new branch is created when a simulation finishes and is 

placed in a queue for future processing. The simulation manager is 

continually picking from this queue and distributing simulation tasks to 

available client computers. At any point numerous branches of queued 

simulations may be followed. The simulation manager is keeping track 

of scores that result after each processed simulation completes. In 

practice a large inventory of unprocessed simulations accumulates.  
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At the point of creation of new branches we perform additional 

actions which emulate “natural” properties of chemical systems. These 

“branching actions” are described in more detail below. We are aware 

that we are falling far short of a complete model of real natural 

chemical settings, which would include energy gradients and a blend of 

solid, liquid and gaseous phases of matter among other properties. 

However, we believe that these branching actions, however naïve, 

implement a crude emulation of the behaviour of a diffuse atomistic gas 

similar to the interstellar milieu from which the first organic compounds 

formed. It is this environment to which the current EvoGrid prototype 

simulation is the closest analog. 

 

Thus the selected frames are used as starting points for further 

“branches” in a simplistic inheritance hierarchy.  A prioritization 

daemon (an automatous software agent) then selects at random from 

one of the available simulations from the generation that has the 

highest priority (score). Thus the initiating of new simulations for 

GROMACS is a stochastic process. It is possible that the stack of 

available simulations might contain generations which have identical 

priorities but this situation will simply result in a larger pool of valid 

potential starting points for new branches. The data for simulation 

frames that remain unprocessed when a branch is not pursued are 

added to a storage file stack. The system may return to that branch if it 

turns out to have been more promising (implementing the back-tracking 

example of Figure 39) so these frames are stored to the end of the 

simulation run.  

 

The conclusion of our simulation experiments is determined not 

by any specific event but by the observation that frames were 

achieving consistently higher scores. At this point the stored frame 

database is frozen and indexed for statistical treatment by several 

tools. The proportion of processed to abandoned frames could be 
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considered a measure of the overall efficiency of the EvoGrid prototype 

optimizations and the specific search functions.  

 

3.3.4 Variations for Experiments #4-7 

 

For Experiment #4 and #5 the selection_daemon was turned off. This 

forced the exploration of every generated simulation resulting from a 

given branching action. So, instead of a random selection of one of the 

branched simulations of high priority, all simulations were executed. It 

was expected that this might have the effect of increasing the 

probability of finding higher maxima but at a higher price of additional 

simulation. This strategy harkens back to Kauffmann’s warnings about 

NP-hardness and the high cost of exploring every pathway in a fitness 

landscape (Kauffman, 1995, p. 155). 

 

Experiments #6 and #7 were run with the same parameters as #4 and 

#5 but with the selection_daemon turned on so that only randomly 

selected branched simulations would be executed. It was hoped that 

the random picking would also find higher maxima but at a lower 

computing cost. Thus, experiments #4 and #5 act as a control for #6 

and #7 in terms of a test of the full SHC optimization. 

 

3.3.5 Explanation of Branching 

 
A key activity in the EvoGrid simulations is the branching action. 

Once the GROMACS simulation has iterated through 1,000 time steps 

the state is saved to disk. Following the calculation of the score from 

that saved state and based on the experimental criteria, new branches 

are then created. These branches are prospective simulations in that 

they may or may not be computed. Branched simulations are filed into 

a stack data structure for later selection for execution. As we have 

seen, the population of branched but un-computed simulations grows 

much faster than the processed simulations.  
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The final, saved frame state of the simulation block of 1,000 

frames is the starting point for branching. We are working with a naïve 

model of atomistic simulation somewhat reminiscent of interstellar 

chemistry (Deamer and Damer, 2010a): a diffuse atomistic reaction 

network. Within this naïve model we came up with an equally naïve if 

well intentioned model of the stochastic and physicodynamic activities 

that might occur in a diffuse atomistic reaction network. This model is 

implemented during the branching process. The goals of this model 

were to “emulate” the natural processes of changes in temperature, the 

breaking of molecular bonds, the changing of charge states of some of 

the atoms due to the effects of radiation, and the mixing of atoms 

flowing into and out of the area. The branching types and their action, 

shown in Table 5, implement these effects. 

 
Branch Type Branch Actions within Frame 

State 
Branches Created 

No-Op Simple duplication of final state 1 

Temperature +1% or -1% adjustment to each 
new branch 

2 

Bond Breakages New branch created with each 
bond broken which in turn depends 
on the number of molecules of size 
2 or greater in the frame 

Based on the 
number of bonds 
broken 

Charge Changes 2 random atoms selected for +10% 
and -10% charge modification 

4 

Wash Half Random Half the atoms replaced with a 
single new atom type 

1 

Wash Half All Half the atoms replaced with new 
type, for each atom type 

5, based on the 
number of atom 
types excluding 
Phosporus 

Table 5 Classification of branches and their actions 
 

How branching works is that the saved frame state is taken as a 

“seed” and then cloned with “mutations” (the branch actions). Each 

branch type action is applied to its own copy of the seed frame state 

and new branched simulations created. Therefore, for a starting frame 
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state having ten molecules present (associations of two or more atoms) 

the total number of branched simulations created would be: 

1 + 2 + 10 + 4 + 1 + 5 = 23. 

 
Let us now examine the branch actions in more detail by 

enumerating the pseudocode of each action. 

 
No-Op 
 

No mutations are made to this branch; simply a single copy of the 

seed frame state is produced. The pseudocode for this action is: 

Duplicate final state 
Submit 

 
Temperature 

 

This branching action simulates gradual external temperature 

increases and decreases emulating heat infusing or departing the area 

in a diffuse way (no gradient or source or sink is modeled). A 

thermostat is used in a separate step to modify the heat bath target 

temperature to account for excess heat introduced to the simulation 

due to our naïve bond formation (when atoms bonds are formed too 

closely GROMACS introduces heat). The pseudocode for this action is: 

 
Duplicate final state 
Bath temperature set to +1% 
Submit 
Bath temperature set to -1% 
Submit 

 
Bond Breakages 
 

Bond breakage is performed to simulate the effects of collisions 

or radiation on molecules. We perform bond breakage outside of 

GROMACS in each separate branch of the simulation. The number of 

branches formed is equal to the number of greater than two sized 

atoms molecules in the simulation frame. Bonds are created following 

the GROMACS simulation phase of 1,000 time steps. Bonds are 

broken in a separate branch. This all occurs outside GROMACS. No 
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bonds are broken during the 1,000 frame simulation, only created (or 

replaced if a better bond comes along and the atom is at its bonding 

limit). The pseudocode for this action is: 

 
For every bond in the simulation 
 Duplicate final state 
 Break bond 
 Submit  

 
Charge Changes 
 

Charge changes are applied (+10% or -10%) are applied each to 

two randomly selected atoms, creating four simulation branches. 

Charge changes emulate the external influences of radiation. The 

pseudocode for this action is: 

 
For 0 to less then 2 (loops twice) 
 Duplicate final state 
 Select random atom 
 Increase charge by 10% from final state 
 Submit 
 Decrease charge by 10% from final state 
 Submit 

 
Wash Half Random 
 

This branching action replaces half the atoms with a random type, 

emulating chemical mixing from adjacent sources. This action uses the 

Wash Generic function with a call-back that selects random types for 

each replacement molecule. 

 
Wash Half All 
 

This branching action replaces half the atoms with the same type 

for each type of atom. This also simulates chemical mixing from an 

external source. The pseudocode for this action is: 

 
For each type of atom 
 Use Wash Generic with callback that specifies 
the current atom type for replacement 

 
Wash Generic 
 

This function is used by other wash implementations and the 

pseudocode for this action is: 
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Duplicate final state 
Group atoms into molecules 
Randomise molecule order 
Select molecules until total number of atoms is 
larger then required percentage 
For each selected atom 
 Change atom properties/type to type selected 
by callback 
 Remove all bonds the atom is involved in 
 Try up to 10 times: 
  Give random position 
  Test for proximity to other atoms 
  If not in bonding range to nearest atom, 
stop loop 
Submit 

 
Note that washes are performed for each completed frame 

producing a new simulation branch for each, separate from the 

branches created for the other methods. We replace randomly selected 

atoms in already formed molecules, as well as single unbonded atoms.  

 
3.4 Results from the EvoGrid Prototype2010 
 
Hardware Implementation and Performance of the EvoGrid 
 

 
Figure 56 First full configuration of the EvoGrid in a room in the 
author’s barn, in August of 2010 
 

With an explanation of the software architecture and core algorithms 

behind us let us briefly look at the first two realizations of the hardware 

of the EvoGrid prototype. Figure 56 depicts three of the half dozen five 

to ten year old dual core Intel servers configured in the first full EvoGrid 

prototype network. This network was set up by the author in August 
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2010 in a room in his barn in northern California. This network ran fairly 

reliably for eight weeks but experienced the non-recoverable failure of 

three client machines half way through. The load was taken up by the 

remaining systems. 

 

 
Figure 57 Second full configuration of the EvoGrid running at Calit2 on 
the campus of the University of California at San Diego 
 
 

In the late fall of 2010 the staff and management at Calit2, the 

California Institute for Telecommunications and Information 

Technology, located at the campus of the University of California at 

San Diego, agreed to host the 2010 EvoGrid prototype for its next set 

of trials. The network was set up by January of 2011 and the core 

system, a Sun Intel i7-based 24 core processor (shown in Figure 57) 

was set up with seven “slaves” or client systems running as Debian 

Linux virtual machines on computers within the Calit2 cluster. The first 

task of the system was to run the complete analysis of the control 

(Experiment #3) data. This data was analyzed in a matter of days when 

it would have taken weeks on the home-built first generation EvoGrid. 

This system was then utilized to run the 4th, 5th, 6th and 7th experiments 

through to our project completion in May, 2011. 
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3.4.1 Scaling of the Hardware and Software Services 

 

Prototype 2010 of the EvoGrid ran experiments on three distinct 

networks, the last two being variations of the software setup on the 

same installed servers. 

 

Experiments Clients: function Cores SM cores 

Exp #1, #2, 

#3 - DigiBarn 

4 (average):  

1 sim 
1 - native 1 core - analysis 

Exp #3, #4, 

#5 – Calit2 
7: 2 sim 2 - VMs 24 VM - analysis 

Exp #6, #7  

– Calit2 

7: 1-2 analysis 

    2 sim 
4 - VMs 24 VM - analysis 

Table 6 Hardware configurations and services running for each of the 
three phases of experimental operations. 
 
Table 6 illustrates the hardware configurations for the seven 

experiments. The first three experiments were done on the DigiBarn 

network on an average of four client machines running GROMACS 

simulations and one dedicated machine to run the simulation manager. 

The SM was also running the analysis (scoring) daemon service. Each 

was running with dedicated hardware, using a single core and running 

natively (with no virtualization). 

 

The UC San Diego Calit2 network was initially configured to run 

Experiments #4 and #5 on seven clients running two cores each with 

two simulation services (one per core). The SM was running on a 24 

core server but only using a single core for the SM functions and 

analysis.  The machines on this network were configured with faster 

CPUs and more memory than the DigiBarn systems. However, they 

were running the EvoGrid through virtual machines (VMs), which brings 

overall throughput down into the range of running natively on the older 

hardware. The statistical analysis phase of Experiment #3 (searching 

for the number and size of molecules) was run on this network. 
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Experiments #6 and #7 were also run on the Calit2 network but with 

the seven clients configured to run EvoGrid services in four cores. We 

took the opportunity to distribute analysis daemons to each of these 

seven machines. In some cases the client machines were running two 

analysis daemons each. 

 

In the initial network having four clients running against three 

experiments there was a linear relationship between the size of the 

network and the number of frames being processed per day. With the 

addition of more analysis daemons each generation of the 

experiment’s inheritance hierarchy trees was being explored in parallel 

by a number of analysis daemons before the next generation of 

branches were made. This permitted a branch to be explored more 

thoroughly and increased the possibility of finding maxima. On the 

higher performance Calit2 network the numbers of processed and 

unprocessed frames for the longest running Experiment (#6) is far 

higher than for previous configurations. This was attributed to more 

dedicated computing hardware but also the more sophisticated 

distribution of simulation and analysis daemons. Future development of 

systems like the EvoGrid would do well to establish some kind of 

formal understanding of an optimal balance between simulation and 

analysis services. When analysis falls behind simulation, branching 

does not occur, and inheritance hierarchy trees get explored wider, 

rather then deeper. 

 

In conclusion, the computationally intensive step of simulation scales 

linearly with the number of physical client computers employed. The 

use of separate CPU cores improves this by another linear factor. 

There is no limit in the number of processors for linear scaling save the 

capacity of the simulation manager to handle their coordination. The 

use of virtualization carries a cost but enables the use of many more 

network computing resources. The distribution of analysis daemons, 

which supports the exploration of simulation results and generation of 

the inheritance hierarchies, has a large impact on the pace and type of 
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exploration done. The above-described summary of the network and 

services topology should be kept in mind when considering the results 

of experiments later in this section. 

 

3.4.2 High Level Analysis of the Optimization Methods at Work 

 

The high level performance of the DigiBarn EvoGrid network can 

be determined from the data in Table 7. For the first experiment 

(search criteria: number of molecules formed) 213 frames were 

processed but of those only 187 fully completed processing (due to 

crashing of the simulator part way through the frame simulation step) 

and 11,015 branches were abandoned as incomplete, i.e. without 

being processed. This yielded a ratio of one frame fully or partially 

processed for approximately 52 abandoned (i.e. never processed). 

One argument we are making here for the desirability of applying this 

kind of methodology to study emergent phenomena in chemical 

simulations is the saving of computing resources, and therefore 

realizing a substantial time savings. As the large number of abandoned 

frames need not have been computed as preset goals were already 

met, the first EvoGrid experiments seemed to be providing such 

savings. 

 

Another argument is that without these teleological (goal setting 

and attaining) methods, desired ends may simply never be reached, or 

reached in such a long period that research grants (or even the 

lifetimes of researchers) may by then have run out. 

 

Experiment 
#Processed 

(#Failed) 
Simulations

#Incomplete 
Simulations 

Complete:Incomplete 
Ratio 

Highest 
Score 

1- num mol 187 (26) 11015 1:51.713615023474 60 
2- mol size 148 (39) 40654 1:217.40106951872 4 
3 -control 155 (21) 16178 1:91.920454545455 N/A 
Table 7 Tabulation of two months of execution of the EvoGrid first 
prototype network run between August and October of 2010 
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Continuing to look a the high level results from Table 7 we see 

that for the other two experiments we measured ratios of 1:217, and 

1:91 processed to abandoned frames, respectively. Back of envelope 

calculations suggests that with the first hardware network, each frame 

took the following time to compute: 

 
Fully or partially processed frames: 

213 + 187 + 176 = 576 

 

Days of operation of first simulation (approximately) =  

First full day: August 8, 2010 

Last full day of simulation: October 6, 2010 

for a total of 64 days or 1,536 hours. 

 

So if 1,536 hours is divided by the total of 576 frames processed 

we get an approximate time of 2.66 hours or two hours and forty 

minutes per frame for processing. Of course many of these frames only 

achieved partial processing so this number is very approximate. 

Processing of these frames involves simulating 1,000 time steps with 

1,000 atoms executed within the GROMACS version 3.3 engine. For 

the 1,000 time steps GROMACS carried out a diffuse atomistic 

molecular dynamics simulation involving encounters of atoms which 

then experienced attractive or repulsive forces. As described previously 

on the final time step the state of the field of atoms was dumped to disk 

and a form of naïve bond formation applied and the frame was scored. 

Other global effects including the above-described branching actions 

were applied at this time and the resulting new frame states placed 

onto a queue to be selected for future simulation in one of the 

distributed GROMACS clients. All of this activity was under the control 

of the Simulation Manager (SM). 

 

The time taken to do the above steps for each frame on a single 

processor in a distributed fashion is a guage of the computational load 

involved in even simplistic prototype simulations. It should be noted 
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that during execution of the molecular dynamics simulations the client 

system’s monitors showed the CPU activity close to 100% committed 

to this one task. The Simulation Manager ran on a dedicated Debian 

Linux server and was not so computationally burdened. 

 
3.5 Detailed Low Level Analysis of the Optimization Approaches 

 

We will now take a close look at the results of all seven 

experiments, beginning with the three initial simulation test runs (two 

experiments and one control). 

 

3.5.1 Experiment #1: Number of Molecules 

 

EvoGrid prototype Experiment #1 had pre-scripted search 

criteria designed to optimize the simulation to pursue a vector toward 

generating frames having the largest number of molecules formed. In 

the final processed frame (the 187th in the queue to be analyzed) the 

end products were tabulated after 213 frames were processed (less 26 

failures during processing) and over eleven thousand branches 

abandoned without being turned into processed frames. The “best” 

frame identified contained nine kinds of molecules in a total population 

of sixty molecules overall. This constituted the most populated frame. 

 

Figure 58 shows the plot of results with the simulation-

sequential processed frames on the x-axis plotted against the number 

of molecules observed per frame on the y-axis. Note that not shown 

are the 26 discarded frames due to incomplete computation caused by 

crashes in the simulation engine. We can see two effects here: one is a 

consistent climb in the number of molecules per frame to plateaux in 

the 20s and 30s to a more distinct plateau at around 57 molecules, a 

“pause” and then resumption to a level of 60 molecules where the 

simulation stayed until we terminated the computation at the 187th 

frame. There is a second effect: the occurrence of lower scored frames 

(the low value “spikes” below the main trend graph). These 
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represented frames whose score retreated due to the breaking of more 

bonds than new ones that were formed. These frames represented the 

stock of hierarchical simulation tree branches that were ultimately 

abandoned. 

 

 
Figure 58 EvoGrid Experiment #1 showing 187 successfully processed 
simulation frames plotted along the x-axis with the number of 
molecules observed on the y-axis 
 
 

Note that Figure 58 represents an aggregate of the frame 

scores, not a strictly time-linear output of the whole simulation. Figure 

59 below presents a view we call the hierarchical inheritance tree, 

which represents another view of processed simulation frames within 

the actual order of execution. The topology of this tree, which must be 

seen from left to right as it is rotated ninety degrees counterclockwise 

on the page, shows the rapid climb in score (number of molecules) 

from the earliest simulations followed by the two plateaus. We have 

extracted a portion of this tree graph to be better viewed in Figure 60. 



 
 

 162

 
Figure 59 The hierarchical inheritance tree from Experiment #1 
showing a section to be extracted for better viewing and a “terminal 
node” for examination 
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Figure 60 Extracted view of a portion of the hierarchical inheritance 
tree surrounding simulation ID 2314 
 
 

Here we can see the critical juncture at the “node” representing 

the simulation of ID 2314, which is the 2,314th simulation frame 

generated by the system but only the 78th to be processed (the 

“order”), the rest having been placed in queues from which they may 

never be processed. Note that the order number of 78 also includes the 

26 failed simulations and 13 simulations which were discarded due to 

server issues, so this corresponds to the 39th successfully processed 

simulation and the corresponding point on the chart indicated by the 

arrow in Figure 61. Note that once on that first plateau one frame 

experienced a drop to a fitness of 14 creating the first large downward 

“spike”. This branch is soon abandoned, allowing the “better 

performing” branches to continue.  
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Figure 61 Indication of the presence of the point of simulation ID 2314 
 
 

 
Figure 62 3D visualization of Experiment #1, simulation ID 2314 
 

A third view of this data was created by the programming of a 

WebGL-based 3D visualization system shown in Figure 62. This is 

shown running in the Google Chrome (beta) web browser. On the left is 

represented a full 3D placement of all 1,000 atoms and the molecules 

formed by the time that frame is processed. On the right is a table 

enumerating the type and population of molecules formed using our 
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naïve bonding mechanism for the particular simulation of 

experiment/simID# indicated in the lower left. Also below the main 3D 

window are controls to permit the loading of alternative simulation data 

from the simulation manager, the playing of a “movie” representation of 

the action in subsequent frames and an interface to position the 

viewer’s camera near the notional molecules. There are additional 

controls to turn on or off the view of the bounding box of the simulation 

and to show only bonded molecules. 

 

 
Figure 63 3D visualization of Experiment #1, simulation ID 2314 with 
only bonds shown 
 

Figure 63 shows data for the simulation of ID number 2314 with 

only bonds (molecules) displayed. We note that by this simulation 

branch there are nine kinds of molecules with forty-nine being the total 

population of all molecules (having two or more atoms as members). 

Figure 64 and Figure 65 depict how the user can move an observer 

camera to view a particular molecule within the 3D scene of simulation 

ID 2314. In this case we are viewing a notional hydrogen-nitrogen 

association. 
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Figure 64 3D visualization of simulation ID 2314 with the observer 
camera zoomed to show one of the molecular products 
 

 
Figure 65 3D visualization of simulation ID 2314 with the observer 
camera zoomed to show one of the larger molecular products 
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Figure 66 depicts an aggregate view of processed simulation of 

ID 20123 that occurs toward the bottom of the inheritance hierarchy 

tree for Experiment #1. This is the node circled in red in Figure 59. 

 

 
Figure 66 3D visualization of simulation ID 20123 
 

The larger molecular product shown in Figure 67 is a sulfur-

sulfur-sulfur and oxygen association. It should be noted that by this 

simulation there are still nine type of molecules but now fifty-two in total 

with three molecules having four members, versus two for simulation 

ID 2314. 
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Figure 67 3D visualization of simulation ID 20123 with the observer 
camera zoomed to show one of the larger molecular products 
 

It may have been noted by the reader that there is an absence 

of phosphorus in any formed molecule. Phosphorus contributes to the 

Lennard-Jones forces (when non bonded), but there is no atom that 

can bond with it in our simulations. 

 

3.5.2 Experiment #2: Size of Molecules 
 

EvoGrid Prototype2010 Experiment #2 had pre-scripted search 

criteria designed to optimize the simulation to pursue a vector toward 

generating frames having the maximum molecular size. Our definition 

of “molecular size” is the count of atoms within the series of bonds that 

connect the longest string of atoms in a molecule. Table 8 illustrates 

this for several cases. 
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Molecule Shape Max #Bonds in longest string / 
Molecular Size 

   O – O 1 / 2 
O – O – O 2 / 3 
O – O – O 
        | 
       O 

2 / 3 

O – O – O 
 | 
O 

3 / 4 

Table 8 Definition of “molecular size” 
 
 

In the final processed frame (the 148th in the queue to be 

analyzed) the end products were tabulated after 187 frames were 

processed (less 39 failures during processing) and over forty thousand 

branches abandoned without being processed as frames. The “best” 

frame identified contained molecules of measured size 4 in a total 

population of 119 molecules overall. This constituted the frame with the 

highest number of the largest molecular assemblages. The number of 

molecules was not specifically stored for this experiment, only 

observed in the database during execution. Later experiments stored 

both the number or molecules and molecular size for all experiments. 

 

 
Figure 68 EvoGrid Experiment #2 plotting 148 successfully processed 
simulation frames along the x-axis with the size of molecules observed 
on the y-axis 
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Figure 68 illustrates the time sequence of the occurrence of 

frames with larger and larger molecules present. As we can see there 

is an immediate move within the simulated frames to form at least one 

bond (molecular size of 2) and then some time passes before the 

plateaus of molecules of 3 and then 4 size ratings occur. There is a 

long plateau where molecules of size 4 abound but no further growth 

occurs. 

 

Figure 69 shows the entire hierarchical inheritance tree for 

Experiment #2 with a section to be extracted for easier viewing. Viewed 

left to right as this graph is shown rotated on its side, we can see that 

the topology of this experiment is “bushier” than that of Experiment #1. 

This indicates more “exploration” of options earlier on before reaching 

a stable plateau. 
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Figure 69 The hierarchical inheritance tree from Experiment #2 
showing a section to be extracted for better viewing and a “terminal 
node” for examination 
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Figure 70 Experiment #2, frame ID 4334 where transition to fitness 4 
(molecular size of 4) occurs 
 

Figure 70 depicts the critical juncture at the “node” representing 

the simulation of ID 4334, which is the 4,334th simulation branch 

generated by the system but only the 102nd to be processed (the 

“order”). Note that as in experiment #1 the order number does not 

factor in failed frames. Figure 71 shows this “inflection point” which is 

point number 51 where the final plateau starts. This view illustrates the 

climb from the “fitness” score of a molecular size of 3 to the final 

plateau of molecules of size 4. On that final plateau several frames still 

experience declines of maximum molecular size (to 3 and 2 in some 

instances, not shown in this view) but these branches are abandoned, 

allowing the “better performing” branches to continue. In this way the 

“trend” toward larger emergent molecular structures is preserved. 
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Figure 71 Experiment #2, frame ID 4334 at the inflection point where 
the maximum molecule size jumps to 4 and stays on that plateau with a 
few subsequent (abandoned) branches trending to lower scores 
 

Figure 72 and Figure 73 show how the data for Experiment #2 

are visualized in the 3D interface. In this case Figure 72 shows twelve 

types of molecules and 71 molecules total. At that particular simulation 

ID there are as yet no molecules formed above a size of three. 

 

Figure 73 is a 3D view of the “terminal” node at the bottom of the 

tree in Figure 69 at simulation ID 27411. This is one of the richest 

frames in the experiment with sixteen types of molecules and ninety 

nine molecules in total. 
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Figure 72 Experiment #2, 3D view of frame ID 4334 which does not yet 
show molecules with a size of 4 
 

 
Figure 73 Experiment #2, 3D view of frame ID 27411 which now shows 
molecules with a size of 4 
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3.5.3 Comparing the Experiments and a Significant Early Result 

 

It is also valuable to compare the inheritance hierarchy trees for 

both experiments. Experiment #1 hit a local maximum by chance (by 

random selection) and explored it thoroughly (see left side of Figure 

74). Also by chance, Experiment #2 hit a better local maximum and 

was able to reach a richer end point in fewer steps (see right side of 

Figure 74). The vertical depth of these trees is indicative of early 

successes in finding maxima and in not having to explore widely before 

subsequent maxima are found. Later on (lower in the tree) it becomes 

more challenging to find new maxima, so we get the effect of a plateau 

of complexity in the system. We will see differences in the shapes of 

these trees in subsequent experiments. 

 

 
Figure 74 Inheritance Hierarchy topology of Experiment #1 and 
Experiment #2 
 

One surprise that was encountered is that while Experiment #2 

was designed to create the largest molecules in fact created more 

molecules. There was one frame with 126 molecules generated by 

Experiment #2 versus the final plateau of around 60 molecules for 

Experiment #1. This result was discovered by individually sampling the 

simulation database as at this early stage in our prototype we were not 
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storing the data for all the scores. This unexpected result has a logical 

explanation: by setting the teleological goal of seeking larger 

molecules, we conditioned the system to generate more types of 

molecules, and, as it turned out, more molecules overall as it 

“attempted” to seek ever higher local maxima containing larger 

molecules. 

 

This is a significant result which showed that even though we as 

designers had the best intentions of creating sought-after goals, the 

dynamism of a system modeled crudely upon the highly dynamic 

environments one might encounter in nature created another effect. 

This result suggests that the results intended by our “intelligent design” 

were confounded by unpredictable emergent phenomena. As explored 

in Chapter 1, this is a desired property of any system whose goal is to 

become a useful experimental tool in complexity systems or in biology. 

 
Experiment #3: Control (No Directed Search) 
 

 
Figure 75 Experiment #3 control data showing the number of 
molecules observed in simulation frames 
 

Experiment #3 was a parallel control experiment which simply 

processed frames chosen at random from randomly generated 
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offspring in a “linear” fashion with no search branching. This 

experiment produced some frames with a significant number of 

molecules (see frames containing over twenty molecules in Figure 75) 

but no molecules with more than a single bond. Indeed, due to the fact 

that bonds are broken as well as being formed, without the search 

driving the process of stochastic hill climbing the frames of the control 

experiment often shifted to lower states of complexity without a rapid 

return to increasing complexity as was seen in Experiment #1. There 

was no identifiable level or ratchet visible in the control results but there 

is an obvious slight increase in the average number of molecules 

through time. As Experiment #3 included time-consecutive simulations 

where a simulation was started from the end state of a previous 

simulation, subsequent frames will eventually develop more complexity 

than the first parent simulation. However, the rate of increase of this is 

lower then that of our directed search. Since the control experiment 

used the same branching functions, it has the same chance of 

complexity increasing, if all possibilities were simulated. 

 

 
Figure 76 Experiment #3 control data showing size of molecules 
observed in simulation frames 
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Figure 76 plots the molecular size data which showed the 

occasional formation of molecules of size two (one bond and two 

member atoms) but no overall trend in this data despite the upward 

trend in the number of molecules.  

 

Figure 77 shows the inheritance hierarchy tree for Experiment 

#3 turned counter-clockwise on its side. A general observation is that 

this tree is both broad, and deep, as the space is being explored at 

random, with no search directing selection of prioritized simulation 

branches. So while the space is explored there is no predisposition to 

climb local maxima. 
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Figure 77 Inheritance hierarchy tree for Experiment #3 
 

3.5.4 Experiments #4 and #5 

 

Having established that directed search clearly is generating 

superior results over the control experiment the author determined that 

it was time to instance two new experiments, with a modification to the 

simulation search and branching criteria. Working with the project team 

the logic was developed to include a degradation factor of 90% to be 
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included in the score calculation (see pseudocode in Table 4). The 

pseudocode for this factor is included again below: 

 
  Set Priority = Parent Priority *  
        (0.9 * exp( Fitness Score – 

  Parent Fitness Score ) ) 
 

This formulation will degrade the priority by the above factor of 

the difference between the newly calculated score and the parent 

score.  This modification was made to produce the effect in theory, that 

once achieving a local maximum, the system would more quickly exit 

that maximum and thereby traverse adjacent “valleys” and be able to 

achieve a higher maximum in another part of the fitness landscape. 

 
As indicated in the pseudocode in Table 4 another change to this 

pair of experiments was to turn the selection daemon off. This is the 

facility that randomly selects from available high priority simulations 

which one to actually simulate. With the selection daemon off, the 

system would therefore process every simulation. While 

computationally much more intensive, it was felt that with the 

degradation factor in place and that by exploring the entire space, there 

might be a better chance of reaching higher maxima. 

 

Experiment 
#Processed 

(#Failed) 
Simulations

#Incomplete 
Simulations 

Complete: 
Incomplete Ratio 

Highest 
Score 

4-num mol 158 (39) 5884 1:29.868020304569 33 
5-mol size 71 (42) 38820 1:343.53982300885 2 
Table 9 Tabulation of EvoGrid Experiments #4 and #5 

 

As Table 9 indicates a significant number of frames were 

simulated but not as high a number as for the first experiments. In 

addition there were a higher number of failed simulations. This was in 

part due to failures in the virtual machine setup at the U.C. San Diego 

Calit2 facility. The highest scores for both experiments were 

approximately half the values as for the first two experiments. This 

experiment was run for approximately the same time (eight weeks) on 
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a hardware grid of similar power to the dedicated network of 

Experiments #1 and #2. Table 6 lists this hardware configuration which, 

while more clients were committed, the simulations were run via virtual 

machines running on host operating systems, which imparts some 

performance cost.  Let us now analyze the output of both of these 

experiments. 

 

3.5.5 Experiment #4: Number of Molecules 
 

 
Figure 78 Experiment #4 plot of number of molecules occurring over 
processed simulations 
 

Figure 78 shows the observation of populations of molecules in 

simulation frames, with a relatively high population (25) achieved early, 

followed by a fall-off and then subsequent attainment of higher 

plateaux. There seems to be a trend toward higher maxima punctuated 

by significant times in minima. The experiment might have showed a 

longer trend toward higher maxima but we determined that the run time 

of two months was the maximum time we could commit to it. What is 

clear here is that there is no sustained upward trend with only short 

term reversals as was seen in Experiment #1 for instance. Reversals 

are deep and longer lasting.  
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Figure 79 Experiment #4 maximum molecular size 
 

Looking at Figure 79 for maximum molecular size we see that 

molecules of three members were frequently observed as is shown in 

Figure 80 below. There does not seem to be any sustained upward 

trend, however. 

 

 
Figure 80 Experiment #4, 3D view of molecule consisting of three sulfur 
atoms together with a population of 21 molecules formed at simulation 
ID 48535 
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3.5.6 Experiment #5: Size of Molecules 
 

Ironically the experiment set up to search for and process 

simulations containing larger molecules produced only populations of 

molecular size two (see Figure 81).  

 

 
Figure 81 Experiment #5 size of molecules observed over all 
processed simulations 
 

When studying the population of molecules produced in this 

experiment (Figure 82) we see absolutely no trend, except perhaps 

degradation in the simulation’s ability to find frames with much 

molecular population at all. 
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Figure 82 Experiment #5 number of molecules observed over the 
simulation period 

Figure 83 shows one of the highest scored frames in Experiment 

#5 with ten molecules each of size two. 

 

 
Figure 83 One of the highest scored simulations in Experiment #5 
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Figure 84 may provide further insight. The generation hierarchies 

for Experiments #4 and #5 are rotated on their sides and shown slightly 

cropped with the first processed simulation on the left side. When 

comparing these with the hierarchy trees for Experiment #1 (Figure 59) 

and #2 (Figure 69) what stands out is how broadly distributed the 

frames are. The earlier experiments show a vertical race to the maxima 

while these trees tell a tail of broad and costly searching. Given that the 

selection daemon was inactive, this would result in a large number of 

branches produced at the “same level” of relative score, hence the 

breadth of the tree branches. 
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Figure 84 Generation hierarchies for Experiment #4 and Experiment #5 
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In concluding this round of experiments we can only surmise that 

the strategy of processing every frame, rather than choosing a smaller 

proportion of available high priority frames at random, failed to allow 

the simulation to consistently attain greater maxima and may have led 

to being trapped in minima for long periods. In addition the degradation 

factor may have contributed to faster falling off of maxima. In summary, 

this configuration was unable to explore as much space and what 

maxima were found were soon lost and therefore not able to be 

leveraged as a minimum starting point for the assault on higher peaks. 

 

3.5.7 Experiments #6 and #7 

 

It was determined that the restarting of the selection daemon to 

permit a sparser selection of random high priority frames might 

overcome some of the challenges faced in Experiments #4 and #5. The 

degradation factor was left in place. The hardware network, as 

described in Table 6, shows that we utilized the same number of 

physical computers (7 clients and one server) but we utilized the 

additional processor cores on these machines and roughly doubled the 

number of processes (VMs) running and also distributed a series of 

additional simulation and analysis daemons. The first simulation of 

these experiments was completed on 20 March, 2011. On April 21, 

2011 Experiment #7 was shut down to allow all resources to be 

allocated to Experiment #6. A number of server outages or failures of 

daemons occurred during this period, necessitating the constructing of 

a “watch dog” function which could restart daemons or regulate the rate 

of the production of simulations to process. Despite these issues the 

performance of the EvoGrid prototype during this period was superior, 

with some days averaging forty processed simulations or one 

processed simulation in substantially less than one hour. 
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Experiment 
#Processed 

(#Failed) 
Simulations

#Incomplete 
Simulations 

Complete: 
Incomplete Ratio 

Highest 
Score 

6-num mol 966 (134) 61415 1:50.422824302135 141 
7-mol size 212 (45) 4391 1:16.759541984733 3 
Table 10 Tabulation of EvoGrid Experiments #6 and #7 
 

Table 10 depicts the total simulations processed by the time of 

the completion of the finalization of this thesis in early May, 2011. 

Experiment #7 was shut down as it was showing no clear trend. 

Experiment #6 was showing a clear trend as will be discussed next. 

 

3.5.8 Experiment #6: Number of Molecules 
 

 
Figure 85 Experiment #6 number of molecules through the full 
processing period ending April 28, 2011 
 

Figure 85 clearly shows a sustained trend in the growth of the 

number of molecules observed within frames for the data collection 

period ending April 11, 2011. The degradation factor is clearly not 

affecting the search function’s ability to find and sustain new maxima. 

At a number of points on this graph relative plateaux are achieved only 

to be exceeded later. A number of poor scores are obtained but these 

branches are quickly discarded. As can be seen in the chart, the 
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previous record of a maxima of 60 molecules attained in Experiment #1 

has been exceeded and the trend is continuing upward. 

 
Figure 86 Experiments #1 and #6 compared 
 

Figure 86 plots the results of Experiment #1 (in pink) and 

Experiment #6 (in blue) clearly shows a sustained trend in the growth 

of the number of molecules within frames. Experiment #1 was 

terminated at 187 processed simulations after two months of 

computation when it was felt that the maximum of 60 may represent a 

long term plateau. Clearly this experiment was “holding on” to the 

maximum of 60 and with no back-tracking degradation factor in place it 

was unable to climb down from that maximum. 
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Figure 87 Experiments #1 and #6 compared following four days of 
additional processing 

 

Figure 87 illustrates the continued rise of the number of 

molecules observed in Experiment #6 with an additional four days of 

processing time and plotted on April 15th. In this period two hundred 

frames were computed and a maximum score of 88 was observed. 

This increase in performance occurred when the queue of simulations 

for the terminated Experiment #7 was finally cleared and Experiment 

#6 was permitted to run on all the cores and virtual machines.  

 



 
 

 191

 
Figure 88 Experiments #1 and #6 compared following seven days of 
additional processing 
 

Experiment #6 data was again collected on May 4, 2011. As 

Figure 88 shows that after processing 966 simulations Experiment #6 

posted a maximum score of 141 molecules observed, with a size of 

three being the largest molecule. Note that the number of molecules, 

not size, was the target of this objective function. Figure 89 below 

presents a visual analysis of local maxima reached for Experiment #1 

(a single maximum at 57-60 molecules, circled) and for Experiment #2 

(a series of maxima reached up to the high of 141 molecules observed, 

all circled). The time to depart a given local maximum and find a path 

to a new higher maximum varies, and seems to generally increase, 

although with only one data sample, any characterization at this stage 

should be considered highly informal.  
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Figure 89 Analysis of discrete local maxima reached for Experiments 
#1 and #6 
 

Figure 90 presents an interesting result following a further six weeks of 

processing, up to the point of termination of Experiment #6 in mid June 

of 2011: that of the reaching of what appears to be a long term 

maximum of  167 and then another at 189 molecules once past the 

1655th simulation. 

 
Figure 90 Experiment #6 with an additional six weeks of computation 
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3.5.9 Characterizing the Fitness Landscape 

 

The question we may now be prepared to ask is: what are the 

properties of our underlying fitness landscape? In his book At Home in 

the Universe (Kauffman, 1995) Stuart Kauffman introduces random 

and correlated landscapes. For hill climbing to be possible Kauffman 

talks about the need for landscapes to be “still smooth enough to 

provide clues in ways uphill to distant peaks” (p. 154). Random 

landscapes are so randomly rugged that there are “no clues about 

uphill trends [and] the only way to find the highest pinnacle is to search 

the whole space” (p. 155). On the other hand, Kauffman describes 

other classes of landscapes which embody these clues and are 

conducive to adaptive searching and, as it turns out, climbing by 

evolution through Darwinian natural selection. Kauffman refers to these 

smoother, clue-filled landscapes as correlated, stating that in such 

landscapes “nearby points tend to have similar heights [and] the high 

points are easier to find” (p. 169). From our success in climbing up 

sequential maxima in Experiment #6, we are clearly dealing with a 

rugged, yet correlated landscape. In addition, our landscape is not 

static. As can be seen by the final results of Experiment #6, almost one 

fifth of the atoms available in each 1,000 atom volume have been 

captured within molecular bonds. Thus, as discussed by Rangarajan in 

Chapter 1, the objective function that underlies the landscape is itself 

changing. In the simplest terms the number and kind of interaction 

between atoms is changing through time, although we make no 

attempt here to characterize this function. Kauffman also observes that 

“climbing toward the peaks rapidly becomes harder the higher one 

climbs… [as] the higher one is, the harder it is to find a path that 

continues upward” (p. 168). It turns out that even in modestly rugged 

correlated landscapes the “waiting time or number of tries to find that 

way uphill increases by a constant fraction… [and it becomes] 

exponentially harder to find further directions uphill” (p. 178). From a 

comparison of experiments, in Figure 90 and we can see that the event 
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of the reaching of a significant plateau (which might an regional but 

perhaps not the highest maximum) took over 1600 processed 

simulations for Experiment #6 versus around 40 for Experiment #1 

(Figure 61). These results are suggestive of Kauffman’s constant factor 

and that if an 8th experiment should be carried out it would take a much 

larger number of simulations to best the score and reach another 

regional maximum. The final consideration here is Kauffman’s 

observation that in nature, increasing rates of mutation within a living 

species can overcome the natural tendency to find ways to higher 

fitness and cause the “population [to drift] down from the peak and 

[begin] to spread along ridges of nearly equal fitness” (p. 184). Our 

degradation factor employed in Experiments #4-#7 might be 

considered an analog to this mutation rate, in that as we can see from 

the results of Experiment #6 we have retreated gradually from a 

number of local maxima only to find ways to higher peaks. Kauffman 

points out that “if the mutation rate increases still further, the population 

drifts ever lower off the ridges into the lowlands of poor fitness” (p. 

184). Such an “error catastrophe” may be evidenced in our 

experiments by the too-powerful effect of the degradation factor in 

Experiments #5 and #7. As a final point, therefore, these experiments, 

and the hill climbing fitness they implement, are highly sensitive to the 

conditions set up within the search and scoring, even more so than the 

underlying properties of the fitness landscape itself.  Further analysis of 

these experiments, which is beyond the scope of this thesis but 

valuable for future work, might include: 
1. Generation of a histogram of the occurrence of the types of 

molecules through time. 

2. A mathematical treatment of the formulae and derived rate 

constants of creation and destruction of molecules for several of 

the experiments based on the Lotka–Volterra equations. 

3. An examination of the simulation to extract the chemical reaction 

graph (molecules formed and broken through time) which could 

serve as a valuable input to the hypopopulated reaction graph 

experiment promoted by Kauffman (Chapter 1). 
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3.5.10 Overall Analysis and Key Results 

 

The rapid initial rise and stair-casing of Experiment #1’s 

performance indicates how the priority_simple function in the 

pseudocode in Table 4 operates and conserves its gains. In 

priority_simple there is no active mechanism to force the search back 

down off a maximum, so if no new, higher maxima are available within 

the pool of branches created from that point in the generation tree, no 

further progress is possible. The initial good fortune of the system in 

finding a pathway to early maxima may turn into bad luck as the vector 

becomes trapped on a long term global plateau. This corresponds to 

the case (C) in Figure 39 where without back-tracking no further 

exploration of opportune branches in the tree would occur. 

 

The degradation factor in operation in priority_generation is 

clearly working its magic in Experiment #6. While maxima are found, 

the system does not tarry long within them. As a result the trend is to 

back off out of maxima but the system is still able to aggressively 

search for further maxima. Given sufficient computational resources, or 

luck, or both, the selection daemon is able to find pathways to new 

maxima, despite a large number of intermediate poorly scored 

simulations. Figure 87 clearly illustrates that the approach taken by 

Experiment #6 is far more computationally costly, reaching par (60 

molecules) with the best results of Experiment #1 at the 428th 

successfully processed simulation versus the 39th successfully 

processed frame for Experiment #1. This is a computational cost factor 

of 11:1. If, however, the goal is the increased complexity, the total run 

time of six weeks on a very modest array of computers is not a high 

cost differential when Experiment #1 achieved its plateau in 

approximately half of that time on a computing grid of less than one 

half of the computing power. Exact measurement of the scaling of 

algorithm performance over the addition of computing resources was 

not attempted in this work but clearly would be an admirable goal for 

future development and testing. 
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In conclusion, we put forth that the chart in Figure 88 embodies 

the major result of this entire work, which we summarize as follows: 

As a result of operating and analyzing these experiments for 
six months of continuous run time we have determined that this 
class of distributed small volume, molecular dynamics simulation 
is highly sensitive to small changes in the criteria used in the 
search function, to computing resources available, and to the 
presence or absence of the actions of selection and analysis 
daemons. Within this design underlying systems must be tuned 
carefully with the assignment of simulation and analysis 
processes to computing resources or large queues of 
unprocessed data may accumulate. Considering all of the above 
the optimization technique of stochastic hill climbing aided by 
search is able to produce sustained achievement of ever higher 
maxima with the ability to break through previous thresholds in a 
reasonable amount of time with limited computing resources. 

 

To conclude this look at Experiment #6 it is worth looking at the 

molecular sizes produced (Figure 91) which, while they did not match 

the performance of Experiment #2, did sustain a small growth in the 

population of larger molecules with size three.  

 

 
Figure 91 Experiment #6 molecular sizes observed 
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Figure 92 gives a look into the 3D representation of one later 

frame of Experiment #6 showing many larger molecules of sizes within 

a field of 102 molecules.  

 

 
Figure 92 Experiment #6 showing a later frame with a population of 
134 molecules 
 

In conclusion it seems that Experiment #6 had the properties of 

richness of both the number and size of molecular products and the 

capability, at least as of the time of this writing, of increasing that 

richness. The reader may notice what seem to be molecules of size 

four, five and six but it should be noted that in this experiment the 

molecular size is computed based on the number of bonds present in 

the longest graph through the molecular structure, which in the case for 

the larger molecules was still three (the specific geometry of these 

larger molecules needs to be better represented). 

 

3.5.11 Experiment #7: Size of Molecules 

 
In contrast to Experiment #6, the final experiment produced little 

in the way of the intended output. Figure 93 shows that while 
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molecules of size two were present for each processed frame, only two 

occurrences of molecules of size three were observed. 

 

 
Figure 93 Experiment #7 chart showing the maximum molecular size 
observed in all processed simulations 
 

 

The cause of the failure of the system to build on these maxima is 

not apparent. One hypothesis is that the degradation factor too rapidly 

caused the abandonment of the branches containing the high scoring 

frames. Another hypothesis is that in both cases of the maxima of 

three, a subsequent high scoring simulation crashed and as a result 

generated no future branches.  
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Figure 94 Comparison of Experiment #7 with Experiment #2 
 

Figure 94 compares the results of Experiment #2 which attained 

maxima of molecule size four with the results of Experiment #7, which 

in the time available struck a plateau at molecule size two. 

 

 
Figure 95 Experiment #7 number of molecules plotted against the 
simulation time 
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Figure 95 plots the number of molecules observed in Experiment 

#7 with no clear trend present and a poverty of molecules being 

produced at many points. Similar to the chart in Figure 82 for 

Experiment #5, it could be that if the system finds itself trapped in local 

minima of the production of numbers of molecules, it would also 

thereby have great difficulty producing molecules of larger size. 

 

Figure 96 shows a 3D view of an average frame in Experiment #7 

with four molecules of size two each.  

 

 
Figure 96 An average frame in Experiment #7 

 

Figure 97 shows the generation hierarchies for Experiments #6 

and #7 rotated on their sides and shown slightly cropped with the first 

processed simulation on the left side.  
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Figure 97 Generation hierarchies for Experiment #6 and #7 
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When comparing these with the hierarchy trees for Experiments 

#4 and #5 (Figure 84) what stands out is how much more depth and 

complexity is present in these two trees. While Experiments #4 and #5 

were bogged down in processing a large number of simulations at one 

or two levels, the active selection daemon permitted pruning of these 

broad branches and exploration into further realms. While both of these 

generation trees look similar, appearances can be deceiving as the 

tree for Experiment #7 does not represent a success while the tree for 

#6 does, at least by our measure. 

 

3.5.12 Summary of Experiments 

 

Experiment 
#Processed 

(#Failed) 
Simulations

#Incomplete 
Simulations 

Complete: 
Incomplete Ratio 

Highest 
Score 

1- num mol 187 (26) 11015 1:51.713615023474 60 
2- mol size 148 (39) 40654 1:217.40106951872 4 
3 -control 155 (21) 16178 1:91.920454545455 N/A 
4-num mol 158 (39) 5884 1:29.868020304569 33 
5-mol size 71 (42) 38820 1:343.53982300885 2 
6-num mol 966 (134) 61415 1:50.422824302135 141 
7-mol size 212 (45) 4391 1:16.759541984733 3 
Table 11 Summary of all experiments as of May 4, 2011 
 

Table 11 summarizes all seven experiments undertaken as of 

May 4, 2011. It is useful to compare and contrast each. Experiments #1 

and #2 used a straightforward form of stochastic hill climbing with the 

priority_simple function and produced a reliable upward trend in 

observed complexity (number of molecules and size of molecules). 

Experiment #3 ran with the same starting frame contents and 

conditions as #1 and #2 but with no search function enabling hill 

climbing. The selection daemon still selected frames at random for 

processing but with no regard to their score or priority. Experiment #3 

produced a slight upward trend in the number of molecules (with no 

sustained level) and no trend in the size of molecule. Experiment #3 
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acted as a control on all six other experiments employing the search 

function. Experiments #4 and #5 implemented a new function: 

priority_generation, which used a degradation factor which it was 

hoped would back the system out of local maxima enabling it to find 

higher maxima. In addition, the selection daemon was turned off to 

force these experiments to process every branched simulation. 

Experiments #4 and #5 did not result in any sustained, irreversible 

growth in complexity, although there was a suggestive trend for higher 

maxima for the number of molecules in Experiment #4. Finally, 

Experiments #6 and #7 saw the return of the selection daemon in 

combination with the degradation function. Experiment #6 expressed 

the best performance of our hypothesized optimization of any 

experiment, with consistent, irreversible growth in numbers of 

molecules as well as a parallel modest growth in molecular size. 

Experiment #7 produced poor performance in that molecular size 

remained flat at size two while the population of molecules fluctuated 

and then declined. 

 

3.6 Summary Analysis and Conclusions 

 

The main result reported in Chapter 3 is the successful 

implementation, deployment and testing through multiple experiments 

of the EvoGrid prototype. The prototype was operated in two 

generations over a period of several months on a number of hardware 

and software configurations. The prototype implemented the following 

system to test the hypothesis stated in Chapter 1: a distributed 

processing and global optimization computing grid employing search 

coupled with stochastic hill climbing to support the emergence of 

phenomena (the formation of molecular bonds) within small volume, 

short time frame molecular dynamics simulations. The analysis of 

seven experiments carried out in the Prototype2010 implementation 

provided the following positive result for the hypothesis: 

Distributed processing and global optimization employing 
search coupled with stochastic hill climbing can produce 
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significant performance improvements in the generation of 
emergent phenomena within small volume, short time frame 
molecular dynamics simulations over non-optimized solutions. 

 

Given our experience of these seven experiments we must now 

add to this general hypothesis the caveat that such methods can 

produce significant performance improvements given the correct tuning 

of the scoring, search and processing algorithms. This conclusion 

emerged from the failure of several experiments to make progress 

greater than that shown by the control experiment. This conclusion 

deserves further clarification through additional analysis of the data. 

 

3.6.1 Comparison of Key Experiments 

 

 
Figure 98 Simple linear trendline through the scores of Experiment #3 
 

Let us now compare the performance of the control, Experiment 

#3 (no directed search) with a “successful” experiment and an 

“unsuccessful” experiment both of which employed directed search. 

Figure 98 depicts a simple linear trendline (averaging the Y-axis 

values) through the number of molecules score data for Experiment #3. 

We opted to use the score for number of molecules as it has large 
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enough values to plot trendlines. Molecular size data is too coarse-

grained in its whole numbers of 1, 2, 3, or 4.  As stated previously, it 

was expected that this score (complexity) would grow through time 

even though no directed search optimizations were performed. We can 

see from Figure 98 that an approximate average of 6 molecules 

observed in the first frame grew to an approximate average of 10 

molecules by the 155th frame processed. 

 

 
Figure 99 Linear trendline through the number of molecules scores in 
Experiment #7 
 

We now present Experiments #6 and #7 as a comparison. It 

should be recalled that Experiment #6 employed a search function 

looking for an increasing number of molecules while #7’s search 

function was searching for increased molecular size. However, as we 

have already seen with Experiment #2 above, searching for molecular 

size may actually have the side effect of producing more molecules. 

Therefore it is worth comparing the number of molecules produced by 

all three of these experiments. Both Experiments #6 and #7 were run 

on the same hardware configuration. For our “unsuccessful” 

Experiment #7, Figure 99 shows a decline in the average number of 

molecules from six to approximately three. The cause of this failure to 
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grow the complexity of the simulation is likely to be the sensitivity of the 

search function (for molecular size) to the degradation factor. The rapid 

degradation of the coarser grained numerical scoring of molecular 

sizes of 2, or 3 prevented the conservation of the gains of initial local 

maxima or the gaining of new maxima. 

 

Figure 100 illustrates an opposite effect: the consistent growth of 

the linear trendline from an approximate number of molecules of six per 

frame to an observed maximum population of 141 molecules and the 

trendline average of 110 by the final frame, well more than a full order 

of magnitude greater than the control. 

 

 
Figure 100 Linear trendline through the scores from Experiment #6 

 

Computer simulation experiments, as with bench chemical 

experiments, are sensitive to their initial conditions. In the circumstance 

where a series of simulations are tested, initial conditions altered and 

then these simulations are run again, this sensitivity may be vastly 

magnified. It is this magnification of sensitivity which we are putting 

forth as a key benefit to science in the simulation of small volumes of 

molecular dynamics in which emergent phenomena are sought. 
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This concludes our treatment of the intrinsic value of the 

optimization methods employed in the EvoGrid prototype. We will 

devote the next and final chapter to the potential extrinsic value of 

these methods to science, and conclude by considering possible 

impacts of cyberbiogenesis endeavours on science, and society. 
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Chapter 4: Limitations, Roadmap, Open Questions and 

Broader Considerations for Endeavours Seeking to 
Compute Life’s Origins 
 
Introduction 

 

As was discussed in the introduction to this thesis the long term 

goal of the new field of cyberbiogenesis is to produce in vitro 

experimental verification of an in silico simulated pathway from 

nonliving to living molecular assemblages. Chapter 1 presented the 

hypothesis that a computer software prototype, the EvoGrid, could be 

designed and built to verify whether or not distributed computing with 

search and hill-climbing optimization of simple emergent phenomena 

within small molecular dynamics volumes is able to produce desirable 

outcomes (ideally open ended growth in complexity) versus non-

optimized solutions.  

 

While delving into the prior art of the cognate fields depicted in 

Figure 32 we were able in Chapter 2 to propose the design and the 

implementation of a system in which an off-the-shelf molecular 

dynamics component would be brought into a distributed computing 

framework which would then be able to test our hypothesis. Chapter 3 

chronicled our construction of two versions of the EvoGrid prototype 

and their subsequent testing through seven experiments which 

included one control. Although we implemented a naïve form of 

chemistry in very small volumes over short time scales, our results 

suggest that further development along these lines could be valuable to 

the science of the origins of life and other fields such as complexity 

systems science. We based this conclusion on the observation that 

several of our experiments produced significant computational cost 

savings while bringing desired emergent properties into view in shorter 

time frames. A key result was that though slight modification of one of 

our later experiments, we were able to break through a threshold of 

complexity that had become a plateau for an earlier one. This result 
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suggests that our method may aid simulation environments to achieve 

the capability of open-ended growth of complexity. This open-ended 

facility is an essential property of any experiment (computational or 

chemical) involving research into the origins of life, or alternatively, into 

new theories of universal properties of complexification as proposed by 

Kauffman. 

 

As was also reported in Chapter 3, the experiments carried out 

showed that, properly tuned, the methods employed produced 

significant performance gains with the added benefit of creating a 

system capable of scalable computation and flexible search. The same 

search facility used to score frames for overall complexity can be 

employed to identify specific molecular structures and chemical 

reactions. The distribution of frames onto a computing grid to be 

simulated and then analyzed by search functions can be used to build 

a scalable architecture to tackle larger problems in chemistry and 

origins of life.  

 

We therefore have confidence that the approach demonstrated 

by the prototype EvoGrid is capable of supporting the larger mission of 

computational origins of life endeavours. In this chapter we will pursue 

a road map for future EvoGrid implementations which could be 

developed and deployed to tackle a number of important origins of life 

experiments.   

 

The enumeration of the limitations of the current EvoGrid 

prototype is a good logical starting point to propose a road map for 

future development. We believe that this road map will specify the 

features necessary to build the current prototype into a more fully 

developed system capable of supporting key objectives in the science 

of the experimental simulation of life’s origins. A next objective of this 

chapter is to put forth a number of chemical experimental models that 

lie within the range of tractable computability for a system like the 

EvoGrid. We will also look ahead and suggest a series of larger 
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experiments that could be of value to the field but that may lie outside 

the range of near term computability. Next we will briefly consider some 

of the broader scientific, philosophical, and societal considerations 

surrounding cyberbiogenesis and computational origins of life 

endeavours. Lastly we will conclude with a summary of the 

contributions to knowledge made by this work and some final thoughts. 

 

4.1 Limitations of the EvoGrid Prototype 
 

The most apparent limitation in the EvoGrid’s first prototype 

implementations come through our employing of a naïve bond 

formation methodology. In the prototype, bonds are formed by simple 

proximity calculations using the positions, velocities and other data for 

atom objects exported from GROMACS. The GROMACS package is 

excellent for providing fast molecular dynamics simulations on 

individual computers but it was designed to handle existing molecular 

structures, finding their lowest energy states. This explains GROMACS’ 

popularity in protein folding and other similar molecular geometry 

simulations. However, GROMACS was not optimized for bond 

formation while the simulation is being run. As a result of our bonding 

methods excess heat would be introduced into the simulation for which 

we had to compensate. This heat arose from the placing of atoms into 

bonding distances that were too close. This placement imparted 

potential energy into the atoms resulting in introduced motion which 

translated into heat. This naïve bond formation forced the heat during 

each simulation step to climb requiring us to employ an artificial 

thermostat to dampen heat back to the 300 Kelvin range and prevent a 

runaway effect which would crash the GROMACS engine. The goal of 

this thesis work was not to implement an accurate quantum mechanical 

approximation of bond formation but to test a theory of optimization 

within distributed computing as applied to molecular dynamics 

simulations. We feel, therefore, that our naïve bond formation with 

simulation adjustments produced a sufficiently viable step in the 

process to permit the testing of the architecture and its optimizations. 
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There are extensions to GROMACS including external packages 

that could be employed to implement a full complement of quantum 

calculations enabling bond formation. One such package is the Open 

MOPAC2009 library (Stewart, 1990, Stewart, 2009) which could be 

employed directly by GROMACS for covalent bond formation and the 

representation of other molecular affinities such as those produced by 

electrostatic and van der Waals forces. This implementation was 

deemed to be a major effort in terms of software development and well 

beyond the scope of this work.  In addition, the added overhead of 

libraries like MOPAC2009 would strain the commodity computing 

clusters we had access to. GROMACS was selected due to its open 

source availability, speed on commodity hardware, stability with 

repeated restarts (other packages experienced crashes) and active 

community of support. Despite other limitations, GROMACS worked 

well for generating the experiments described in this thesis. 

 

A further limitation arose from our branching operations which 

were meant to simulate the flow of material through the environment 

and natural forces causing bond breakages which were also naïve at 

best. While our universe is closer to a simulation of real chemistry (and 

nature) than many comparable AChem simulation environments 

(reference section 2.4), it still has a long way to go. 

 

A final major limitation from the current prototype that would 

have to be addressed for future work emerged from the limitation of the 

performance of our available computing hardware. As was covered in 

Chapter 1, computing on sufficient spatial scale and time frames to 

create simulations of biologically interesting phenomena was beyond 

the scope of this project and only now just becoming possible. As 

computing hardware and software scale up in performance over the 

next several decades this will enable future EvoGrids to engage in 

biologically relevant simulations. 
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4.1.1 An Implementation Road Map for Future EvoGrids 

 

Choice of MD simulation engine, bonding methodologies and 

hardware platforms aside, there are a number of low level 

improvements for the platform itself surrounding simulated physics and 

environments which could be implemented:  

• Models permitting fluctuations and periodicity in the environment 

creating non-equilibrium conditions including thermal gradients 

and other spatiotemporal environmental heterogeneities. 

• Modeling of dissipative systems (sinks) which will continually use 

up energy could be coded as thermal inversions or vortices 

creating heterogenic conditions. 

• Implementation of fluxes of material through volumes might be 

encoded through the distribution of molecular inventories and 

support of reactions such as autocatalytic cycles. 

• Simulation of plausible liquid, gas and solid phases of matter 

could be implemented to support the modeling of small contained 

spaces and phase transitions. 

• As mentioned in section 2.2, the global optimization method could 

be extended to employ a hybrid implementation combining 

stochastic hill climbing with other methods including gradient 

search or simulated annealing. 

• The computing resources of Calit2 at the University of California 

at San Diego and elsewhere could be scaled up to hundreds or 

thousands of computers to carry out more ambitious experiments.  

• Simulation support for graphics processing units (GPUs) as well 

as dedicated supercomputing hardware could benefit future 

EvoGrid implementations. In particular, support for the Compute 

Unified Device Architecture (CUDA) defined by the Nvidia 

company could provide benefits to the platform (Nvidia, 2011). 

Alternatively OpenCL, which is independent of hardware 

manufacturer, could be implemented. 
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4.1.2 The Generalisability of the Optimizations 

 

The gains in efficiencies produced by the optimization methods 

employed here are potentially very impressive; however, the test cases 

are so simple as to only be a suggestion of possible gains made by 

more sophisticated scenarios. The detection of the formation of 

macromolecular structures such as lipid vesicles, the observation of 

autocatalytic sets in operation or the witnessing of replicating 

informational molecules are laudable goals for a future EvoGrid but 

well beyond the scope of this preliminary work with the available 

technology. For complex biomolecular simulation spaces the number of 

interactions and time frames involved likely outstrip all current 

computing grid technologies. In addition, the definition of search 

functions to help to optimize systems toward bio-realistic behaviors is 

also an unsolved challenge. Indeed, it is likely that in order to reach the 

goal of the simulated formation of a single closed lipid vesicle, possibly 

dozens of intermediate stages would have to be set up and 

experiments run. It is possible, however, that the savings made by the 

optimizations demonstrated by our prototype may make significant 

contributions to these more challenging experiments. 

 

In keeping with the philosophy that the EvoGrid is a system that 

can be used to produce simulations that can be validated in actual 

chemistry, each of these stages would have to be laboratory tested. At 

any point the laboratory analogue to the EvoGrid simulation may 

diverge from the simulation results and while the computer simulation 

may have produced a sterling result, it might not be of productive use 

to chemists. Refinement and iteration of the virtual experiments would 

hopefully bring them more in line with the chemistry. It is conceivable 

that, along the lines of the revolution of gene sequencing (Venter et al., 

2001), the direct coupling of a future EvoGrid with automated chemical 

experiment and measurement apparatus could accelerate these 

iterations, bringing a qualified high fidelity emergent chemical 

simulation capability to reality.  
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Needless to say, such a capability would be of significant 

scientific and commercial value, possibly being generalized away from 

the origin of life roots of the effort to become a “ChemoGrid” used by 

medical science, materials science, microelectronics and other fields. 

Ironically it is the invention of microfluidics, derived from chip-making 

techniques, which is bringing to the chemistry laboratory the promise of 

automation and miniaturization. Flasks, test tubes and Bunsen burners 

may one day be replaced by supercomputing clusters coupled to super 

chemical computing microfluidics arrays. 

 

By employing large numbers of small cameo simulations, the 

EvoGrid can identify initial conditions and simulation methods to enable 

much larger computer or chemical simulations combining several 

experiments (Figure 42). In such a stepping-stone manner, we believe 

that the simulation of entire protocells including their emergence 

through intermediate steps may be accomplished. The simulation of a 

structure as large as a protocell would require several different 

simulation engines operating in parallel at multiple levels of scale. One 

module might perform a coarse grained simulation of the membrane 

encapsulating the protocell while another would employ MD techniques 

to simulate the movement of molecules across that membrane. The 

EvoGrid has been designed to meet this challenge. The framework 

was constructed in an open manner to be able to incorporate many 

different modules all running using the same optimization techniques 

on a single distributed computation network. 

 

4.1.3 The Power and Necessity of an Open System Employing Search 

in de Novo Emergent Environments 

 

Search is a vitally important benefit provided by the EvoGrid 

architecture. Flexible and powerful search capabilities are critical in any 

environment where de novo emergence of structures and behaviors is 

a desired outcome of the simulation. If millions or billions of small 
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simulations are to be run, search through these simulations must be 

flexible, powerful and automated. The EvoGrid prototype implements 

an open system to permit export of simulation frame states to a JSON-

based file containing generically described objects and properties. The 

Simulation Manager then processes these files, applying search and 

restarting of simulations. In principle any environment could parse this 

file and apply its heuristics. As new AChem engines are supported in 

future EvoGrids, this frame state file would evolve but remain an open, 

published standard. Therefore, in such a loosely coupled system any 

search optimization technique can be applied independent of the 

AChem engine used. The key thing here is that the incorporation of 

search within the EvoGrid transforms it from a simulation system into a 

discovery system. The potential value of such a system to real origin of 

life experiments is covered in the next section. 

 

4.2 Candidate Case Study Experiments for Future EvoGrids 
 

Guidance sought from external advisors throughout this effort 

produced a continuum of recommended in vitro experiments which 

could benefit from the discovery of predictive properties or 

experimental pathways using in silico simulation. This will be described 

here with only a cursory consideration of all the aspects of what it 

would take to create high fidelity chemical models in software. These 

are listed as possible destination points along a road map. 

 

When future EvoGrids can simulate both large enough volumes 

with sufficient molecular content over biologically significant time scales 

contributions to laboratory origins of life experiments could be made in 

several areas. As a part of this road map we researched and are able 

to present here a continuum of in vitro experiments that could be 

supported in some meaningful way by computational simulation. In 

each case a researcher suggested the experiments and expressed a 

belief that computational treatments could be helpful as a predictive 

tool to design experiments and test options. The experiments are 
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presented in order of difficulty in the sense of computability. The final 

experiment is a highly speculative multi-stage experiment being 

developed by the author and colleagues which could illustrate one 

pathway to the origin of complex containment expressing lifelike 

properties. The experiments to be covered include: 

 
4.2.1 Near term viability: formation of simple molecules and small self-

organizing clusters of molecules 

Experiment #1: Interstellar Chemistry Model 

Experiment #2: FLiNT Nanocell Model 

 

4.2.2 Medium term viability: formation of catalysts, informational 

molecules and autocatalytic sets 

Experiment #3: Riboyzyme Selection Experiment Model 

Experiment #4: Model of a Hypopopulated Reaction Graph for the 

Study of Autocatalytic Sets and the Adjacent Possible 

Experiment #5: Model for RNA-Making Reactors in Hydrothermal 

Vents 

 

4.2.3 Long term viability: supramolecular structures 

Experiment #6: Model for Encapsulation of Polymers in Multilamellar 

Structures through Wet/Dry Cycles 

Experiment #7: Model of the FLiNT Protocell Life Cycle 

 

4.2.4 Very long term viability: multi-stage supramolecular model for an 

end-to-end origin of life 

Experiment #8:  CREATR Model 

 

Each experiment is given a measure of complexity which is a rough 

estimate of the number of atoms which would need to be simulated and 

an equally rough estimate of the duration of real-time chemistry which 

would have to be simulated (from nanoseconds to seconds). The next 

category assigned each experiment is a measure of when each 

simulation might become possible (in years in the future): 
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• Near term: immediately possible with current technology, 1-2 

years to implement simulation framework. 

• Medium term: simulation is possible in approximately five years. 

• Long term: simulation is possible in no less than ten years, likely 

probable in fifteen. 

• Very long term: simulation not possible before twenty years and 

could be implemented within thirty years. 

 

4.2.1 Near term viability: formation of simple molecules and small self-

organizing clusters of molecules 

 

Experiment #1: Interstellar Chemistry Model 

Experiment Complexity Tractability 

Interstellar 

Chemistry 

1K-10K atoms 

100 nanoseconds 

Near term 

 

As was concluded in Chapter 1 the design of the first EvoGrid 

most closely corresponds to a model of a diffuse mixture of elements in 

the gas phase similar to the interstellar vacuum. It was therefore 

suggested by Deamer that a next step for the EvoGrid would be toward 

modeling the interstellar medium more completely (Deamer and 

Damer, 2010b). Deamer has described this medium as containing 

“simple compounds like water and carbon dioxide; dust particles 

composed of silica… and metals like iron and nickel” (Deamer, 2011, p. 

18). Upon examining the results of the EvoGrid prototype experiments, 

Deamer noted that a number of molecules formed are suggestive of 

compounds founds in the interstellar medium, sometimes called 

cosmochemistry. It was therefore suggested that a next step would be 

to formulate better bond formation and test the resulting products 

against known assays of cosmochemical surveys. The recent Stardust 

spacecraft collected samples from comet Wild 2 (Sandford et al., 2006) 

and gave tantalizing evidence of biologically relevant interstellar 

molecules. 

 



 
 

 219

From a discussion (Deamer and Damer, 2011a) any simulation of 

this environment would need to run at very low temperatures, close to 

absolute zero (a few degrees Kelvin). An activating energy source to 

drive bond formation might well be light from a nearby star. It is 

believed that bonds are formed in this environment not by collisions but 

directly by incoming energy or by gradual heating and melting of 

grains. Long polymers and lipid-like molecules can form in these 

environments as evidenced by the collection of meteorite samples and 

as suggested by experiments carried out within terrestrial analogs in 

vacuum chambers (Deamer and Pashley, 1989). 

 

Simulation Approach 

 

This model is the closest to the current form of the EvoGrid 

prototype. Implementation of realistic chemical bonds caused by direct 

activation energies as well as heating and cooling cycles might bring 

the simulation closer to corresponding to chemistry in the interstellar 

medium. Very small volume simulations could be carried out to see 

what products and yields occur and compare these molecular species 

with those observed by direct astronomical spectral observation, 

samples returned by spacecraft or the products of terrestrial vacuum 

chamber experiments.  

 

Experiment #2: FLiNT Nanocell Model 

Experiment Complexity Tractability 

Fellermann: FLiNT 

Nanocell Model 

100K atoms, 

Microseconds to minutes 

Near term especially 

using coarse graining 

techniques in 

replacement of MD or 

MPI techniques 
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Figure 101 From Fellermann: Metabolism and fission of a nanocell with 
surfactant (green) surrounding lipid (oil in yellow) and the water is not 
shown. 
 

The FLiNT nanocell model describes a minimal self-replicating system 

involving surfactant (soap) molecules associating with a droplet of lipid 

(oil) which they start to break down, converting into more surfactant 

(see Figure 101 from (Fellermann, 2009a, p. 67)). This surfactant/lipid 

structure self-organizes into an analogue of a tiny cell which has a 

simple yet dynamic surface and interior with which it exchanges. This is 

one of the simplest systems which exhibits these properties and the 

system has been modelled in silico using DPD methods (see 

description of DPD in section 1.2.2) and experimentally studied in vitro 

the laboratory (Fellermann et al., 2007). This system has a tractably 

small number of molecules involved and as such is a good candidate 

for simulation at the atomic level in MD.  As illustrated in Figure 101 the 

initial surfactant metabolizes a precursor droplet and turns it into a 

functioning nanocell (top panels 1-3). This nanocell continues to 

consume its droplet and other lipid in the environment and driven by 

the changing of the lipid precursor to surfactant ratio (lower left panels 

4-5) begins to elongate. These elongated structures are stable for a 

short time until all precursors are converted into surfactants at which 

point the nanocell divides, becoming two daughter cells (last panel). 

 

Fellermann provided a description of the complexity of this system 

such that we can determine a rough estimate of its computational 

tractability. Recall that in DPD, atoms and molecules are grouped 
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together in a coarse graining fashion into “beads” for greater ease of 

simulation. Fellermann begins by describing the basic atomic 

population of the nanocell itself (Fellermann, 2011): 

…one DPD solvent bead accounts for about 5-6 water 
molecules. Hence… [we have an experimental size] of 103 
[molecules] and bead density of 3, include [five or six water 
molecules]*3*103 = 15,000 to 18,000 water molecules or 45,000 
to 54,000 atoms… some of the systems have size 12 and 53, 
which corresponds to about 30,000 to 35,000 water molecules 
or about 100,000 atoms… should not be too much for 
GROMACS run on a cluster. 

 
However, if you really consider to model these systems in 

MD, be aware that the time scale of MD is an expected three 
orders of magnitude slower than DPD (Groot and Warren, 
1997).  While people have successfully modeled self-assembly 
of micelles the simulation times of metabolically induced micellar 
fission might be way out of reach for MD. 

 

Fellermann then goes on to estimate the time scales that would be 

required to simulate this model: 

From an experimental point of view, the closest time 
estimates I could relate my simulations to are the fast and slow 
relaxation dynamics of micelles -- i.e. the typical times for micelles 
to exchange monomers with the bulk phase (fast relaxation time) 
or to assemble and disintegrate from solution (slow relaxation 
time scale). The fast time scale is on the order of microseconds, 
whereas the slow relaxation time is on the order of microseconds 
to minutes. 

  
Simulation Approach 

 

The conclusion is that this simulation is within range of MD 

engines in the class of GROMACS but that DPD and coarse graining 

techniques are likely to bring this class of simulation into nearer 

tractability. Alternatively using a multi processor interface (MPI) within 

the EvoGrid would allow four cores of a quad core processor to each 

run one quarter of a simulation space. Solving the boundary 

communication issues within the CPU array may still be somewhat 

costly but effective simulations of about 100,000 atoms on a distributed 

cluster running GROMACS or another MD engine is possible today as 

evidenced by the Folding@home successes (Pande et al., 2003). The 
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primary value of engaging in this simulation might be to develop tools 

and techniques to permit larger simulations of the bulk aqueous phase, 

lipids and boundaries occupied by smaller molecules such as 

surfactants. All of these become factors in larger origins of life 

simulations. 

 

4.2.2 Medium term viability: formation of catalysts, informational 

molecules and autocatalytic sets 

 

Experiment #3: Riboyzyme Selection Experiment Model 

Experiment Complexity Tractability 

Bartel & Szostak: 

Riboyzyme 

Selection 

Experiment 

10K atoms 

100 nanoseconds to one 

microsecond 

Mid term 

 

Another computably tractable early test case would be to reproduce a 

simplified version of the groundbreaking experimental work by Bartel 

and Szostak (1993) in the isolation of new ribozymes from a large pool 

of random sequences. This experiment was entirely carried out within a 

bead-filled flowing column of reactants.  

 

Simulation Approach 

 

It is plausible that an array of MD simulation systems could be 

allocated to compute segments of a simplified version of this flow and 

be able to model the natural selection of ribozymes occurring at the 

molecular level. EvoGrid optimization and search would be used to 

create frames modelling the flow of random sequences through the 

reactor column used in this experiment. New ribozymes would be 

sought and the source input of the column adjusted using the method 

similar to the search trees of prototype2010. However, based on advice 

from Deamer (2011a) this experiment involved ten trillion molecules 

with 300 randomly placed nucleotides, making even a small subset of it 
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computably intractable. Instead, our simulation could take the approach 

of applying search to mixtures of many fewer random molecules which 

show the ability to catalyze their own replication (ligation). A key step 

would be to fold a few hundred nucleotides within the randomly 

generated RNA and then select for known active sites which support 

ligation. In this manner, the EvoGrid could simulate the salient portions 

of this experiment without having to tackle the large size of the bulk 

flow of molecules. 
 

Experiment #4: Model for RNA-Making Reactors in Hydrothermal Vents 

Experiment Complexity Tractability 

RNA-Making 

Reactors 

100-250K atoms 

Microseconds 

Mid term 

 

 
Figure 102 Evolution of an RNA population in a network of inorganic 
compartments driven by hydrothermal vent flows driven by  
thermoconvection, and  thermophoresis. 
 
(Koonin, 2007) and (Baaske et al., 2007) describe a model (Figure 

102) based on seafloor observations of hydrothermal vents in which 

flows from these vents travel through pores and compartments by 

thermoconvection and thermophoresis. Early in these flows, 

compartments (1) serve to support the accumulation of 

mononucleotides. In subsequent compartments (2), accumulation of 
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abiogenically synthesized RNA molecules occurs followed by 

exploration of the nucleotide sequence space through ligation and 

recombination (3) and finally (4) the emergence of an “RNA world” able 

to continue with processes of natural selection. This putative network of 

compartments could support the phases of evolution as a dedicated 

reactor. Such a system was modelled in bulk phase by computer by 

Baaske et al. (p. 9350). They simulated thermal gradients, 

microcompartment pore shapes and studied the resulting 

concentrations of RNA and other molecular products that might be 

produced in such a reactor.  

 

Simulation Approach 

 

It is not hard to see that there is a good fit for a more granular 

simulation of this hypothetical system, perhaps at the MD level. Frames 

of volume simulations could be stacked in a grid overlain on the 

topography of the compartments. Simulation of the flow through this 

system would be carried out with molecules handed off from one frame 

to the next. Search functions would look for the emergence of 

mononucleotides, RNA, RNA polymerases and the occurrence of 

competition and selection of RNA sequences. The authors talk about 

millimetre sized pores producing and concentrating nucleotides at a 

109-fold accumulation. This is obviously a very large space and a large 

number of molecules, not including the bulk phase of water. It may, 

however, be possible to simulate a still-viable miniature version of this 

already Lilliputian system. 

 

Based on the advice of Deamer (2011a) a simpler approach needs to 

be considered as the amount of material flowing and the length of the 

path is even larger than that in the Bartel and Szostak experiment. A 

frame branching structure driven by searches for the formation of lipid 

and/or RNA could be applied to small volumes containing a simple heat 

gradient and a small amount of flowing molecular material. This 
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configuration might suffice to model enough of this experiment to guide 

future in vitro implementations. 
 

Experiment #5: Model of a Hypopopulated Reaction Graph for the Study of 

Autocatalytic Sets and the Adjacent Possible 

Experiment Complexity Tractability 

Kauffman: 

Hypopopulated 

Reaction Graphs 

10K atoms estimated 

Time not determined 

Mid term 

 

More challenging but likely still tractable in the mid term would be 

to simulate solutions wherein autocatalytic cycles (Kauffman, 1993) 

may be observed to emerge de novo in plausible prebiotic soups. The 

EvoGrid would deploy frames of a very large number of objects 

(millions of atoms) but break the simulation into areas handling the 

boundary issues to support molecules moving between these areas. As 

mentioned in the section in Chapter 1 of this thesis, discussions with 

Stuart Kauffman identified an additional future application of the 

EvoGrid as a “system to model reaction dynamics in the messy world 

of prebiotic chemistry from which messy life emerged” (Kauffman and 

Damer, 2011ab). Specifically Kauffman saw a future EvoGrid 

implementation being capable of taking on “how on a ‘hypopopulated’ 

vast reaction graph fluctuations did NOT die out, but advanced into 

different Adjacent Possibles” (Kauffman and Damer, 2011b). This 

second goal relates to theories about as yet uncharacterized properties 

of the universe that sustain a ratcheting of complexity and that these 

properties are key factors, along with Darwinian natural selection, in 

the emergence of life. From a private communication with Dr. Wim 

Hordijk (Hordijk, 2011) who is working with Kauffman and the CERN 

origin of life group project:  
[w]hat we are interested in is to see what happens when we start 

with a large graph of possible reactions, but only a very small starting 
set of molecules. Given the possible reactions and molecule 
concentrations, what will the flow of these molecules look like over the 
complete reaction graph? Will we see things like autocatalytic sets 
forming? We already know they exist in the underlying reaction graph 
structure (given a high enough level of catalysis), but the question is 
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whether (and how quickly) they will actually be realized given some 
(non-equilibrium/non-ergodic) molecular dynamics starting from a 
simple "food set". 
 

What is not clear is the number of molecules, size of computing 

space and time frames involved in creating this large reaction graph. It 

is also not obvious whether full scale chemical simulation is required or 

whether abstract, perhaps CA-based artificial chemistries would 

suffice. However, while discussions on this exciting potential 

application of the EvoGrid are just beginning, it seems that our work  

has captured the interest of leading researchers.  

 

Simulation Approach 

 

For now this is the most abstract of the considered experiments, 

with uncertain chemical models, time frames and populations. The 

author plans to follow this up with meetings in the near future. 
 

4.2.3 Long term viability: supramolecular structures 

 
Experiment #6: Model for Encapsulation of Polymers in Multilamellar 

Structures through Wet/Dry Cycles 

Experiment Complexity Tractability 

Deamer: Polymer 

Encapsulation in 

Multilamellar 

Structures 

100K atoms (wet and dry 

compartments), coarse 

graining lipid boundaries 

Microseconds for multiple 

condensation reactions to 

occur in both phases 

Mid term 
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Figure 103 Electron micrograph of vesicles composed of the 
phospholipid lecithin (left), and multilamellar array of this lipid in a dry 
state (right) (images courtesy Dave Deamer) 
 
Figure 103 shows the formation of complex molecular structures, 

particularly lipid containers (left) which flatten out and form two 

dimensional compartments (right) through a series of wet-dry cycles 

(Rajamani et al., 2010). The resulting multilamellar bilayers act as an 

organizing environment concentrating available nucleotides and 

encouraging the condensation reactions which form of ester bonds and 

the resulting polymerization of strands of RNA-like molecules. As water 

has largely diffused out of the environment it is not present to 

participate in the back reaction and break the ester bonds of the 

polymers. As a result, the drying environment is able to serve as a 

dynamic ordering environment for the formation of biologically 

important macromolecules and upon rehydration those molecules are 

present in vesicles (Deamer, 2009). 

 

 
Figure 104 A molecular model of adenosine monophosphate (AMP) a 
monomer of RNA (inset) organized into a polymeric strand of RNA 
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trapped between lipid bilayers of a dry state multilamellar array (image 
courtesy Dave Deamer). 
 

Figure 104 shows a computer model of the multilamellar 

structures with RNA-like polymeric strand of adenosine 

monophosphate trapped in between. This result solves a fundamental 

problem in research on the origin of life by showing a process by which 

polymers capable of catalysis and replication might have been 

produced on the early Earth. In this case RNA-like polymers are 

synthesized non-enzymatically from mononucleotides in lipid 

environments. 

 

Simulation Approach 

 

According to Deamer (Deamer and Damer, 2011a) a viable and 

valuable approach to simulating this experiment would be to ask the 

question: what is the probability of free diffusion forming an ester bond 

(the basis of polymers and life) in a 3D aqueous medium versus the 

probability of such bond formation in a 2D, dried medium? The 

departure of water molecules means that the back reaction (hydrolysis) 

is less likely so polymerization is more likely in condensation reactions. 

So the simulation approach for the EvoGrid would be to simulate one 

large frame of molecules representing the concentration and energies 

of the wet, encapsulated vesicle contents, and a second frame 

simulating the dry cycle multilamellar compartment.  

 

No attempt would be made to simulate the drying or the fusing of 

membranes as according to Deamer this is very complicated. The 

encapsulating medium (lipid membranes) need not be modelled in 

detail in either the bulk 3D phase or the 2D multilamellar dried phase. 

Thus we would use coarse graining techniques to model the 

membranes, but fine graining MD techniques on the solution phases. 
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Experiment #7: Model of  the FLiNT Protocell Life Cycle 

Experiment Complexity Tractability 

Rasmussen: FLiNT 

Protocell Life Cycle 

Millions of atoms 

Microseconds to 

milliseconds 

Long term 

 

 
Figure 105 Detailed view of an animation of the FLiNT protocell life 
cycle: the photonic energized division and eventual ligation of short 
DNA segments via a ruthenium complex embedded in a surfactant 
layer around an oil droplet (source: DigitalSpace) 
 

Figure 105 shows an animation for the protocell model being 

developed by Steen Rasmussen and his group in the Center for 

Fundamental Living Technology (FLiNT) at the University of Southern 

Denmark (Rasmussen et al., 2008, Rasmussen et al., 2003b, 

Fellermann et al., 2007). In this model, informational molecules (short 

strand DNA) ligate and interact with other molecular assemblages 

anchored into a surfactant layer surrounding an oil droplet. Thus a 2D 

membrane forms on the droplet and provides a matrix for the 

interaction of the system with energy (photons), and the production of 

new surfactant molecules.  
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Figure 106 Animation sequence showing the division of the protocell 
once sufficient oil droplet feeding, ligation of new DNA and absorption 
of energy has occurred (source: DigitalSpace). 
 

Figure 106 depicts another animation frame in which, after 

sufficient growth of the underlying oil droplet, the system is dividing, 

and carrying the surface mounted molecular assemblages along into 

daughter droplets.  

 

Simulation Approach 

 
Due to the sheer size of the molecular structures in this 

experiment, extensive coarse-graining would be required. The oil 

droplet itself would best be simulated as a single entity, similar to a soft 

body object in classical large body 3D simulations. The bulk phase of 

water and population of free lipid would also have to be largely 

simulated as a single, monolithic representation. The MD simulation 

would be free to focus on the surfactant layer and interactions between 

the bulk phase and underlying droplet. Individual patches of this layer 

could be simulated in frames in the EvoGrid with motion within the 

layer permitting molecules to travel between frames. 
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4.2.4 Very long term viability: multi-stage supramolecular model for an end-to-

end origin of life 

 

Experiment #8:  CREATR Model 

Experiment Complexity Tractability 

Damer et al: 

CREATR end-to-

end OOL model 

Millions to billions of atoms

Seconds to minutes of 

real-time simulation 

Very long term 

 

The following model is being developed by the author and 

collaborators (Damer et al., 2011b). While this model is in an early 

phase of conceptualization it illustrates what was covered in the 

conclusion to the EvoGrid prototype experiments in Chapter 3: that any 

pathway to an origin of life is likely to be explored by a series of 

chemical and computer simulation experiments in an iterative cycle of 

increasing fidelity. The model below is an amalgam of previous work, 

including elements from the above-described experiments. The model 

was inspired in part by Freeman Dyson’s “double origins” hypothesis 

(Dyson, 1982, Dyson, 1999) which posits that an origin of life could 

have occurred through the combination of independently emergent 

mechanisms for reproduction of a structure and the replication of the 

coding of inheritable traits. The model proposes a natural system that 

repeatedly generates a large number of Dyson’s “garbage bags” whose 

contents consists of non-random collections of “dirty water”. The 

plausibility of this model remains to be seen but it can serve as a 

provisional exemplar of what might be termed an end-to-end origin of 

life model. In this model, which we are calling Complex Repeated 

Encapsulation of Attached Template Replicators (CREATR), begins 

with a population of simple prebiotic molecules, traverses several 

stages, and ends up as a system of macromolecular assemblages 

reproducing under the control of an informational copying mechanism 

and subject to adaptation through Darwinian natural selection.  
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The CREATR model’s first few steps are built on the prior work 

from the experiments described in this section. Experiment #3 could be 

a mechanism for producing Riboyzymes, Experiment #5 for providing 

RNA-making reactors within micropores, Experiment #6 for showing 

that encapsulation of polymers in multilamellar structures is possible. 

Later steps rely on results from (Hanczyc and Szostak, 2004) in the 

formation and replication of vesicles. 

 

Step 1: Association of an informational molecule with a membrane 

 

 
Figure 107 The innovation of anchoring of an informational molecule to 
a membrane. 
 

(Vlassov et al., 2001) provided evidence that supramolecular 

RNA complexes can bind to phospholipid bilayers. Polymerization may 

have been encouraged by the wet-drying cycles described by (Deamer, 

2009) thereby resulting in the situation that the RNA complex is closely 

associated with the membrane (Figure 107). The formation of an RNA 

complex with the adaptation of anchoring to the membrane is one step, 

while the parallel mechanism for producing ribozymes to catalyze the 

production of the RNA or the anchoring mechanism might result from 

the factors described by (Bartel and Szostak, 1993).  
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Step 2: Partial pore encapsulation by a membrane 

 

 
Figure 108 Partial containment of micropore by lipid membrane. 
 

The formation of membranes over small pores either in shoreline 

environments where wet-drying cycles could occur or associated with 

hydrothermal vents would produce a small, temporary but free form of 

encapsulation with the benefit that the system begins acting in a cell-

like fashion permitting transmission of molecules passing by the pore 

through the membrane (Figure 108).  

 

 
 
Figure 109 Anchored RNA complex preferentially influencing 
membrane permeability 
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The RNA complexes which are anchored to this membrane may 

promote and regulate the local permeability of the membrane, 

providing a mechanism to “select” what molecules cross into the 

micropore (Figure 109). (Vlassov et al., 2001) discovered that the 

binding of the supramolecular RNA complexes to phospholipid bilayers 

produces a disruption in the layer which forms a channel. Those 

molecules may therefore cross into the micropore in the vicinity of the 

anchored RNA complex thus encouraging any process associated with 

that complex, notably the templated replication of the complex and its 

associated anchoring mechanism. The anchoring mechanism may be 

produced by another process, an autocatalytic set for example. If the 

anchoring function is ultimately coded for by the nucleobases of the 

RNA then it will become a directly selected for mutation of the RNA 

complex. 

 

 
Figure 110 Anchoring of two RNA complexes to the membrane 

 

If the contained system is capable of promoting the templated 

ligation of the RNA complexes then a second RNA complex may 

anchor onto the membrane some distance from the original complex 

(Figure 110). 



 
 

 235

Step 3: Full encapsulation of a complex 

 

 
Figure 111 Dissociation of the membrane and associated complex from 
the micropore, encapsulation of the complex followed by growth 
 

Due to a physical process such as wave action the membrane 

complex may become detached from the micropore, and carry along 

with it the affixed RNA complexes and other local contents. This free-

floating complex may quickly close to form a full encapsulation. 

Encapsulations may contain few elements (center) or a number of 

molecular structures including two or more anchored RNA complexes 

(right). It is important to note that the original micropore would again be 

free to support new membrane formation and the activity of partial 

containment. This and other micropores would therefore act as a 

factory to produce numerous encapsulations, each with different 

contents, but possibly somewhat similar for each individual micropore. 

Therefore, a population of vesicles encapsulating a variety of 

complexes would be released into a local region.  

 

Step 4: Division of vesicles 

 

 
Figure 112 Division of protocell vesicles through growth of surrounding 
lipid membrane 
 

These vesicles, or “protocells”, would “compete” for the building 

blocks of their membranes (lipids) and absorb other small molecular 
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components of the environment which would enable internal activities. 

One key activity might be the replication of membrane-embedded RNA 

complexes which are themselves acting as primitive regulators of 

membrane permeability. Contained catalysts in concert with active 

functions on the RNA complexes might also mediate a sort of 

metabolism driven across the membrane at the disruption channels. 

Another key activity, perhaps performed by other contained RNA 

polymers, is the regulation of membrane growth, permitting the 

protocell to enjoy a more stable existence than non-regulated 

protocells. In a conversation with David Deamer about the CREATR 

model, he posed the question (Deamer and Damer, 2011b): how could 

these encapsulated molecules regulate the tendency for larger vesicles 

to break down into smaller ones, i.e. could the presence of these 

molecules destabilize the larger membrane and activate the process of 

division at a specific time? For Deamer it is this control mechanism 

between the encapsulated molecules and the growth and point of 

division of the vesicle that is a key point in the emergence of a 

plausible protocell. Finally as the protocell grows (Figure 112, left), the 

elongation that precedes a possibly controlled division into daughter 

protocells (right) (Hanczyc and Szostak, 2004) may force attached 

RNA complexes apart so that they are statistically more probable to 

end up in a separate daughter protocell. Of course other important 

metabolic molecular machinery would also have to somehow end up in 

two copies, one in each daughter cell. Returning to Dyson’s reasoning, 

catalysts might statistically, rather than exactly, reproduce this 

machinery. 

 

Step 5: Development of lengthening competing protocell lines 

 

At this point the entire viability of any given protocell is 

determined by the combination of its structure, contents, and activity 

both in the interior and across the membrane. Therefore protocells 

which do not support an increased probability of the successful and 

complete division of daughter cells will tend toward extinction. Due to 
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error rates at each stage, the probability of successful division must 

tend toward a high likelihood (a local maximum) quickly or the entire 

“line” would be lost. Dyson points out that if the probability of at least 

one daughter protocell containing a complete self-reproducing 

population of molecules is greater than one half, then multiple 

functional daughters will result in a chain reaction producing a “line” of 

statistically reproduced protocells. Natural selection as described by 

Darwin would come into effect even in this inexact statistical 

reproduction of protocell lines. Competing lines would over time refine 

the mechanisms of their catalysts, the effectiveness of the channels, 

and the regulatory and replicating capability of the RNA complexes. If 

after a few divisions a given line of protocells eventually dies off there 

will always be the up-stream micropores able to produce a new 

combination to try again. In addition if the broken parts of destroyed 

protocell lines are retained in the local region, they could serve as 

building blocks for the next micropore encapsulation. In addition, 

membrane fragments with affixed complexes from destroyed protocells 

might combine with other protocell fragments to create a new protocell 

line. This would be an early form of sexual recombination with the 

“genes” of the affixed RNA complexes of both fragments forming a 

union of sorts and possibly producing new beneficial functions. 

Through this trial and error process the lines of protocells might 

therefore persist for more and more generations until they can avoid 

catastrophic failure and persist essentially forever. When a protocell 

line persists forever, then life’s origin has occurred. 

 

Summary 

 

Our model represents a form of combinatorial chemistry (Deamer 

and Damer, 2011b) in which millions of encapsulated vesicles could be 

produced, each representing a different “natural experiment”. Most of 

these experiments would end with the dissolution of the vesicle and 

loss of its contents but if only a single encapsulated complex held the 

right combination of contents and active pathways to support the 



 
 

 238

properties discussed above, life would have a chance to get going. Of 

course, beyond the regulation of growth and the formation of controlled 

channels, such vesicles would have to also possess the machinery to 

capture energy and nutrients, and the ability to copy these mechanisms 

such that this capability is propagated to the daughter cells. 

Presumably the membrane attached RNA complex could also do 

double duty encoding the mechanisms to catalyze the construction of 

this machinery. At some point the multipurpose role of the RNA as 

membrane pore mechanism, growth regulator and other functions 

would bifurcate into separate molecular complexes and we would 

witness the emergence of a cell genome, ribosomes, energy 

mechanisms and other separate functions. 

 

Simulation Approach 

 

The CREATR Model is an example of a multi-stage end-to-end 

origin of life simulation challenge alluded to in section 4.1. Future 

EvoGrids would have to be capable of simulating and searching for 

behavior amongst millions or billions of atoms over time scales of 

seconds to minutes in order to process experiments surrounding the 

stages of this model. Parallel in vitro laboratory experimentation would 

have to be carried out in analogs to this environment to disqualify, 

verify and calibrate the in silico experiments. 

 

4.3 Open Problems for Computational Origins of Life Endeavours 

 

Inspired by the open questions for artificial life posed by Bedau 

et al. (2000) cyberbiogenesis computational origins of live endeavours 

also have a number of related open issues which are summarized 

below. The first set of open problems is related to the construction of 

systems like the EvoGrid and is listed next in rough order of 

importance. 
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4.3.1 Open Problems in Computational Origins of Life Related to 
Future EvoGrid-like Systems 

 

• Problem #1: The EvoGrid cannot escape the teleologically-derived 

problem of all designed simulation environments: if we set up and 

simulate a system acting in the ways we accept as probable, then that 

system is much less likely to act in improbable and potentially 

informative ways, as results are always constrained by the 

abstractions and assumptions used. Another way of stating this very 

central conundrum is that as long as we do not know how chemical 

molecules might be able to exhibit emergence of important 

characteristics such as replication we will not be able to design the 

fitness functions to actually select for these molecules or their 

precursors. The fitness-function generation problem is as yet 

unsolved. However, the EvoGrid framework is being built to: 1) allow 

each potential experimenter to code in their own definition of fitness, 

accumulating knowledge applicable to the problem in an iterative 

fashion; and 2) support a more exotic solution in which the search 

functions themselves ‘evolve’ or ‘emerge’ alongside the simulation 

being searched. Actually building the second option would first require 

a much more extensive treatment from the field of information theory. 

 

• Problem #2: Bedau et al. (2000) call for creating frameworks for 

synthesizing dynamical hierarchies at all scales. The heterogeneous 

nature of EvoGrid simulations would allow for coarse-graining 

procedures to focus simulation from lower levels to higher ones, 

saving computing resources by shutting off the less critical, more 

detailed simulations below. An example of this would be to switch to 

coarse grained simulation of an entire lipid vesicle, ceasing simulation 

of individual vesicle wall molecules. Conversely, fine grained 

simulations could be turned on for locally important details, such as 

templated replication of an informational molecule. However, it should 

be noted that interfacing different software engines and 

representations of simulation space is notoriously difficult. Running 

the same simulation space at multiple levels employing multiscale 

physics from quantum and molecular dynamical, to coarse grained 

dissipative particle dynamics, and beyond to smooth particle 
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hydrodynamics is a very challenging problem that awaits future 

research. 

 

• Problem #3: A general theory of cameo chemical simulations needs to 

be developed to understand the minimum number of interacting 

objects and physical simulation properties required in these 

simulations for the emergence of “interesting” phenomena pertinent to 

life’s building blocks. Our hypothesis that the genes of emergence in 

cameo simulations would apply to larger simulations also needs to be 

tested in the context of more ambitious COoL efforts capable of 

supporting artificial evolution. 

 

• Problem #4: Related to Problem #3 is the question of at what level to 

simulate, i.e.: what volume of space, quantity of objects, interactions, 

and what time scales should a simulation accommodate? If, for 

example, the level chosen were molecular dynamics then due to 

limitations on computing power it would force simulations to exist in 

only within nanometer or micrometer volumes for far sub-second 

duration.  

 

• Problem #5: How does one design a simulation in which organization 

goes from simpler to more complex forms through multiple levels of 

organization in an open ended fashion? Related to this is the question 

of what kind of tools must be developed to determine whether 

complexification is actually occurring within the simulation? The 

problem of simulations reaching points where all phenomena that can 

be observed have been observed is well known in the Alife field. In 

chemistry combinatorial explosions can result in terminated 

experiments consisting of black tars. The achieving of simulations and 

frameworks that support multiple levels of complex emergent 

phenomena is one of the greatest challenges in computer science. 

 

• Problem #6: How can a simulation be developed such that the 

automated observer functions or human operators that are examining 

the simulation state do not unduly bias the simulation compared to an 

un-observed version? This is the back end of the front end problem of 
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teleology stated in Problem #1. Initial conditions will bias the 

experiment at the front end, but observation and selection can bias or 

be detrimental for emergent phenomena at the back end. Isolation of 

the simulation engines from the observation mechanisms is one way 

to limit operator bias. 

 

4.3.2 Open Problems in Computational Origins of Life as a Field  
  

The emerging practices of cyberbiogenesis in silico and in vitro 

simulation have a number of higher level open questions which this 

work has brought into focus: 

 

• Problem #7: How will it be possible to know whether an object in a 

simulation is to be judged “artificially alive” (assuming the “strong” 

Alife hypothesis that the entity is a true form of living system) when 

previously the simulation had only parts or behaviors judged 

“artificially non-alive”? Related to this is the problem of how to define 

life itself (Dawkins and Damer, 2000). A related question is whether 

there a kind of “Turing Test” that could be devised to test the strong 

Alife hypothesis? This challenge will be taken up in the section titled 

An Origin of Artificial Life Turing Test for the EvoGrid later in this 

chapter. 

 

• Problem #8: How much influence in the simulation is permissible such 

that the emergence observed is not considered “intelligent design”? Of 

course a computer simulation framework by definition is “intelligently 

designed” (refer to Abel in section 1.4) but presumably at least some 

of the emergent phenomena observed are not consciously 

anticipated. This question is intimately involved with the history of 

evolutionary theory. Darwin himself began his book Origin of Species 

(Darwin, 1859) with a discussion of human-directed selection in the 

breeding of domesticated animals. 

 

• Problem #9: Can cyberbiogenesis pathways be successfully explored 

through the use of digital, electronic computers or is this beyond the 

capability of even a large grid of machines or a dedicated 
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supercomputer based on the von Neumann design? Are more exotic 

computing technologies or architectures required to simulate nature at 

the level of chemistry? Abel’s skepticism versus Bentley’s more 

optimistic Systemic Computing approach discussed in section 1.4 

yields some insight here. 

 

• Problem #10: Would abstract universes with more tractable 

simulations be a wiser direction to take versus attempts at simulating 

nature at the chemical level? If an abstract universe is selected, what 

are the minimum required physical approximations necessary for an 

artificial origin of life event to occur? This assumes that all required 

physical phenomena can be successfully simulated which in itself is 

an open question.  

 

• Problem #11: If an artificial chemistry is selected for the approach, at 

what level must we target the simulation: quantum dynamics, 

molecular dynamics, coarse-graining mesoscale simulation (Cieplak 

and Thompson, 2008, Ortiz et al., 2005), or a hybrid approach of two 

or more levels (i.e., multiscale simulation)? Also related is if higher 

levels are selected to construct the model, does this departure from 

the “fundamental chemistry” of the simulation put at risk the viability of 

an artificial origin of life emerging in the simulation?  

 

• Problem #12: How can the problem of emergence be addressed 

through the solving of the problem of our own perception (Gordon, 

1998)? A related question is: how could the simulation itself develop 

its own perception, which seems to be a prerequisite to self 

organization and living processes? 

 

• Problem #13: How can science best develop the techniques to 

enhance the likelihood of the emergence of highly improbable events 

through automated algorithmic shortcuts such as stochastic hill 

climbing or enrichment techniques (Kalos and Whitlock, 2008)?  

 

• Problem #14: As there is no universal definition of what makes an 

object alive  (Ablondi, 1998), it is reduced to being “merely” a 
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configuration of molecules that function together in specific roles 

(containment, metabolism, or replication for example). Is it then 

possible to manipulate a set of simulated molecules towards imitating 

a living organism? This would discover at least one pathway from 

nonliving to living matter without the added overhead of a hands-off 

black box approach to emergent phenomena. Could this kind of 

“intelligent coaxing” produce a meaningful result that could assist in 

cyberbiogenesis? The reverse case is also interesting: taking apart a 

living cell into its non-living components. Would a re-assembly of non-

living components that produces a more minimal yet still viable cell 

provide insight into pathways to the origin of that minimal cell? 

 

• Problem #15: Langton coined the term “artificial life” (Langton, 1989) 

and envisaged an investigation of “life as it could be”. Should 

cyberbiogenesis systems be constrained to models of the emergence 

of life on Earth? More abstract simulations may shine a light on life as 

it might be out in the universe (Gordon and Hoover, 2007), as a tool 

for use in the search for extraterrestrial intelligence (SETI) (Damer 

and Brown, 2010, Gordon and Hoover, 2007), or as a separate 

technogenesis within computing or robotic worlds. 

 

• Problem #16: A critic of theories of chemical evolution, cosmologist Sir 

Fred Hoyle used the statement about a ready-to-fly 747 aircraft being 

assembled by a tornado passing through a junk yard of parts (Hoyle, 

1984) to ridicule the idea of spontaneous generation of life at its origin. 

This idea today fuels creationist claims for irreducible complexity as 

one of their strongest arguments for the existence of a Creator. 

Should therefore practitioners of cyberbiogenesis efforts take on these 

challenges?  (Gordon, 2008) and (Barbalet and Daigle, 2008, Barbalet 

et al., 2008) recently engaged this theme through dialogues about the 

origins of life and the debate between creationists and scientists.  

 

• Problem #17: Gordon predicted (Gordon, 2008, p. 359) that “Alife 

enthusiasts have an opportunity to solve the ‘Origin of Artificial Life’ 

problem well before the chemists will solve the ‘Origin of Life’ 

problem”. The question begged by this statement is whether or not the 
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field of origins of life should place more resources on the cyber part of 

cyberbiogenesis and what investments would be made early on to 

establish that Gordon’s claim is in fact plausible? A related question is 

whether or not the field should wait for computing power to increase 

further before making such investments? The author of this thesis 

started on this work in 1985 and opted to wait through almost a 

quarter century of progress in computing before returning to it.  

 

• Problem #18: What capabilities will digital simulation ever be able to 

offer chemistry or biology especially in origins of life questions? Any 

given computational system might be able to show fascinating 

emergent phenomena but there is a real possibility that such 

discoveries might well stay trapped in silico and never transition over 

to be replicable in vitro. In this case would a new duality of non-

overlapping magisteria emerge similar to Stephen J. Goud’s (Gould, 

1997) non-overlapping magisteria of science and religion?  

 

4.4 Societal Considerations Posed by the EvoGrid Endeavour 
 

Given the likely distant prospects for any successful 

cyberbiogenesis effort, perhaps a valuable preparatory activity in the 

interim is to consider the societal impact of such a project on a range of 

human endeavors. Any enterprise that sets as its goal the emergence 

of an artificial origin of life, testable in chemistry and therefore 

ultimately realizable as a new form of chemical life is likely to draw in 

controversy from many quarters. Considering this likely controversy will 

serve us today to uncover a number of conundrums that lie at the basis 

of science, technology, religion and philosophy. 

 

4.4.1 Scientific Conundrums 

 

The goals of cyberbiogenesis beg basic questions in science 

including: 
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1. How does science define a living entity or a whole living system? 

Will scientists simply “know it when they see it” when what might 

be considered a bona fide living system is observed in a digital 

simulation? These questions were discussed during the author’s 

visit with Professor Richard Dawkins at his home in Oxford 

(Dawkins and Damer, 2000) and summarized in Appendix B.1. 

 

2. What is the experiment to be undertaken and at what point does it 

start? Do experiments begin with pre-built components of some 

complexity but not considered to be living, and proceed from there 

as suggested by Gordon (2008)? Or should simulation 

experiments be initiated much further down the ladder with simpler 

artificial precursor molecules, or even farther from basic atoms 

assembling precursor molecules within an ab initio primal soup? 

 

3. How much influence is required to induce a sufficient measure of 

emergence? In other words, how much “intelligent design” is 

required in the setting up and operating of cyberbiogenesis 

experiments? What degree of ongoing human guidance should be 

permitted in both the virtual and chemical experiments which 

follow? 

 

4. Would an entirely artificially evolved entity pose a current or future 

threat to any part of natural environment in the Earth’s biosphere 

or to technological or biological elements within human 

civilization? How could such a threat be mitigated? If such a threat 

were possible, is it grounds for not pursuing this line of research? 

 

4.4.2 Technological Conundrums 

 

A decade ago the Artificial Life community took stock of their 

field and proposed a set of Open problems in Artificial Life (Bedau et al 

2000) which provide a clear look at the brickwork of the technological 

foundations of any serious cyberbiogenesis effort. The authors set a 

challenge in the second open problem to study abiogenesis in an 

artificial chemistry and identifying that “[b]etter algorithms and 
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understanding may well accelerate progress… [and] combinations of… 

simulations… would be more powerful than any single simulation 

approach” (p. 367-68). The authors also point out that while the digital 

medium is very different from molecular biology, it “has considerable 

scope to vary the type of ‘physics’ underlying the evolutionary process” 

and that this would permit us to “unlock the full potential of evolution in 

digital media” (p. 369). Ten years later as projects such as the EvoGrid 

take a run at a simulated abiogenesis, the technological conundrums 

have come to the fore: 

 
1. What level(s) do you simulate at, and at what scale? Is molecular 

dynamics a sufficient level to simulate at, or are quantum 

dynamical effects required? Or is a more abstract artificial 

chemistry which can exhibit desired properties a better starting 

point than aiming at high fidelity to chemistry? 

 

2. Nature operates in parallel at multiple scales with multiple physical 

properties emerging from these scales. So how can von Neumann 

computers (essentially serial processors) be adapted to meet this 

challenge or does this challenge belong to the domain of special 

purpose hardware or an amalgam of digital and chemical 

computing? 

 

3. What computational corners can be cut but still retain plausibility in 

nature and viability in experimental chemistry? Related to this is 

the claim by Abel (2009b) that any computational simulation is 

formulaic, subject to predicative knowledge and not based on 

physicodynamic factors so may never be representative of 

solutions in vitro. In addressing this question Gordon presents the 

following possibility for future EvoGrid implementations: 

 

Consider having the EvoGrid simulate a less plausible 
approximation to chemistry. Allow a more abstract 
chemistry to be tested which also might be subject to a 
proof by construction in mathematics. The components 
will be decent approximations of real chemistry. Allow 
yourself to introduce all the bias that you want but as long 
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as the program constrains you to do things that are 
physically realistic then you might argue that you have 
something artificially alive. You just don’t have the 
pathway to the end point but you know there is a way 
back. Decomposed parts could be markers on many 
paths to life. The important point is proving that one such 
path exists (Gordon et al., 2010). 
 

4. How much do the search functions and human designed initial 

conditions and sought after end points to experiments limit their 

ultimate creativity? This is the problem of systems employing a 

teleological approach: bias toward the sought after goals limits the 

usefulness of the system as an open ended discovery mechanism. 

Evolution does not strive toward goals. Even though nature cannot 

be praised for the best “designed” solutions to problems it also 

cannot be faulted for teleological bias. Gordon makes the following 

points along this line: 
 

Examine the case of the EvoGrid where you act as the 
intelligent designer and use the tools to determine the 
minimal artificial organism. If you could then put one 
together then you could look for the properties and 
potential pathways to that minimal artificial organism. You 
could also consider an experiment where you start with 
bigger building blocks that are considered to be non alive 
and see if they assemble into something you would 
consider to be alive (Gordon et al., 2010). 

 

4.4.3 Religious, Ethical, and Philosophical Conundrums 

 

The goals of cyberbiogenesis endeavours will attract questions 

and controversy in society including: 

 
1. Does a future successful cyberbiogenesis disprove the need for a 

supernatural creator as an agent in the origin of life and for the 

guiding of life’s evolution? 

 

2. What is the consequence for the world’s religions of the creation of 

an artificially alive (in computer simulations) or a chemically alive 

entity?  
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3. Would an artificially sourced living entity be protected as an 

endangered species? Would only the chemical entity be protected 

or the virtual one as well? 

 

4. Does the enterprise of cyberbiogenesis represent a willful 

achievement of human innovation or is it an inevitable expression 

of the entire biosphere and life itself, with humans as mere agents 

forwarding life into a new mechanism of evolution? Is this the 

means by which life is expanding itself out into other parts of our 

solar system or the universe? Are we willing or unwilling agents of 

this expansion? 

 

In a discussion of ethical concerns in (Rasmussen et al., 2003b, 

p. 67) the authors echo some of the above: 

 

Generating life de novo will create public reactions. The 
reactions will probably be along two lines: (i) Environmental 
concerns that the life-producing technology could “get out of 
control”, and (ii) Religious and moral concerns, based on the 
beliefs that humankind must restrain from certain endeavors on 
grounds that they are fundamentally amoral. 
 

Ethical questions arising around the possible creation of cells 

from existing biology or completely new molecular constructions have a 

storied history. Non-technical press reaction from announcements in 

biotechnology and genomics such as the research on minimal cell 

research (Fraser et al., 1995) and the announcement of the 

sequencing of the human genome (Venter et al., 2001) often turns to 

talk of “Frankencells”. Concerns about more artificial de novo 

nanostructures able to survive and reproduce in natural environments 

have also been discussed in the nanotechnology community (Merkle, 

1992). It is clear that future work on the EvoGrid or any 

cyberbiogenesis-oriented system will have to plan to address the 

above issues. Initially the response to concerns might be to state that 

lifelike objects in a simulation are merely objects in a simulation and of 

no threat to people or the biosphere. The argument might be made that 



 
 

 249

these objects might be a threat to computer networks, however, akin to 

computer viruses. However, the size of virtual environment needed to 

sustain an artificially alive system would be so complex and large that 

the system would effectively be an isolated island, similar to large 

database systems. If, however, there is an active effort to reproduce 

these lifelike objects in physical chemistry, the alarm will be raised with 

many in the public and scientific community. 

 

4.4.4 An Origin of Artificial Life Turing Test for the EvoGrid 

 

Related to concerns about Frankencells is the question of: how 

do you know when something is lifelike enough, especially in a 

computer simulation, to declare it “alive”? In his 1950 paper Computing 

Machinery and Intelligence (Turing, 1950) Alan Turing wrote “I propose 

to consider the question 'Can machines think?” (p. 433) and defined a 

test of machine intelligence, one variation of which consisted of a 

human judge conversing (through a text interface) with an unseen 

human and a similarly hidden computer (p. 442). If the human judge 

could not tell the difference then the machine would be judged to have 

reached some sort of cognitive equivalence to the human participant.  

 

At some point in the near or far future, a group of engineers, 

biologists, philosophers and others may be assembled in a room. In the 

next room, project specialists would be observing a rich array of lifelike 

objects moving about in a virtual world running on some future 

EvoGrid. The esteemed guests may be asked to undertake a sort of 

updated Origin of Artificial Life Turing Test, wherein they hear or read 

abstract descriptions of the objects and environments witnessed but 

not revealed by the staff. They would also be exposed to descriptions 

of real, living entities and their environments. Over many hours or days 

they would be able to ask questions about both environments. If in the 

end if a majority of the visitors cannot consistently tell which 

environment is in fact the real, biological one and which is the one 

witnessed in the simulation then the EvoGrid has produced a progeny 
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which has passed this form of Turing Test. Of course there will likely be 

strong arguments for and against the “aliveness” of the EvoGrid 

entities, especially if they exist in an abstract universe far from the 

norms of chemistry. If, at some later date, a chemistry faithful EvoGrid 

entity is fabricated with molecules and survives to breed within a 

physical soup, then the concerns of the doubters may be quelled. 

Ironically the likely optimal stage at which an EvoGrid entity is 

fabricated and tested in chemistry is when the entity is in its embryo 

stage. 

 

4.4.5 A Visionary View: A Lens on Universes of Life 

 

Let us now roll forward to some far future date when working 

cyberbiogenesis systems abound and when one can witness the 

closure of the loop whereby the observation of in vitro adaptations 

feeds back to changes in the in silico ecosystem. Going even further, 

numerous types of entities and environments could be simulated, 

extending our ability to model origins of life in alien habitats and to cast 

light onto life as it might be in the universe. Of course there may well 

be a substantial range of viable artificial living systems for which there 

would exist no physical medium in which they could be instantiated. In 

this case the only universe in which that these creatures could be 

chemically rendered out of the simulation into physical reality is a 

parallel one possessed of truly exotic physics. We arrive to the 

conclusion that some nearly infinitely endowed future cyberbiogenesis 

system could serve as a telescope (or microscope), a lens into where 

in this universe or others life might arise and projecting how far it might 

evolve. Indeed, in the unlikely event that an intelligent higher form of 

life should arise in a simulation, an idea today very securely in the 

realm of science fiction, would we choose to instantiate it physically or 

seek out where its naturally evolved cousins might be resident? 

Presumably at that point that form of life would have to have its own 

say in the matter.  
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4.5 Summary and Contributions to Knowledge 

 

In this work we sought to create both intrinsic and extrinsic 

contributions to knowledge. The major intrinsic contribution surrounds 

innovations around optimizations for the distributed computing of 

artificial chemistries, notably molecular dynamics. The extrinsic 

contributions deal with the wider relevance of such innovations as tools 

that can support endeavours in the field of the study of possible 

pathways to the origin of life on Earth. 

 

The EvoGrid prototype which was designed, built and operated 

for this work provided a proof by implementation that a distributed small 

volume molecular dynamics simulation could be coupled with a global 

search optimization function enabling emergent phenomena to be more 

effectively generated. Let us conclude by summarizing the 

contributions to knowledge made by this work. The core intrinsic 

contribution to knowledge is the establishment of the architectural 

principles of such systems, a system design, specific engineering 

solutions and, finally, implementation and experiments to test the 

stated hypothesis: 

Distributed processing and global optimization employing 
search coupled with stochastic hill climbing can produce 
significant performance improvements in the generation of 
emergent phenomena within small volume, short time frame 
molecular dynamics simulations over non-optimized solutions. 
 

From the analysis of the data from the operation of the prototype 

it was concluded that the prototype verified that the optimization 

methods did produce significant performance improvements in terms of 

time saved and computational products produced over a non-optimized 

solution, in one case generating a full order of magnitude more 

molecular bonds. A discovery was made that the simulation is highly 

sensitive to initial conditions, especially within the logic of the search 

function and any degradation factors. This is a confirmation of common 

knowledge in the design of global optimization systems. This would 
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require the designers of future experiments to carefully manage this 

process. Other intrinsic benefits to science accruing from the optimized 

design include the demonstration of reconfigurable search functions, 

open and extensible interfaces, and scalability across hardware 

networks. With further development, we feel that this design is 

therefore suitable to support a variety of origins of life endeavours. 

 

Several key extrinsic contributions to knowledge were also 

provided in the course of this work and reported in this thesis: 

 

• A history of artificial life and chemical simulation endeavours as well 

as a literature review of informative fields contributing to the design of 

viable computational origin of life frameworks.  

• A vision and definition of a new term cyberbiogenesis which captures 

the marriage of in silico computer simulation and in vitro chemical 

experiment for origin of life endeavours. 

• A map of the major cognate fields that illustrate how these fields 

inform cyberbiogenesis enterprises.  

• A listing of current limitations and a technical roadmap for the 

improvement of the current EvoGrid prototype and a roster of 

experiments in origins of life research to which future EvoGrid 

platforms may be applied.  

• A series of open questions both for the EvoGrid and for an emerging 

field of computational origins of life simulation. 

• An illustration and discussion of scientific, philosophical, religious, and 

general societal conundrums posed by this line of research.  
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Final Thoughts 
 

This thesis aims to introduce a major innovation into the field of 

research on the origins of life. The research described in this thesis 

makes an original and substantial contribution to this and other fields of 

knowledge by successfully designing, building and characterizing a 

unique discovery system, the EvoGrid. This system combines chemical 

simulation and search with hill climbing techniques to more optimally 

permit complex behavior to arise within small volume, distributed 

molecular dynamics simulations. I hope that this study provides both 

inspiration and methodologies of substantial use to future scholars and 

practitioners who, within the next few decades, will help to develop the 

new field of cyberbiogenesis. Through the work of these future 

researchers, systems derived from the experience of the first EvoGrid 

may cast some light on the dark unknowns of the origins of life on 

Earth and in the universe. If a descendant of this work were to “achieve 

the transition to life in an artificial chemistry in silico” (Bedau et al., 

2000) then the “Evo” in EvoGrid would have been realized and 

Darwinian natural selection or another form of open ended evolution 

would be witnessed for the first time in a digital simulation. 

 

Towards the end of the research work for this thesis and based 

on the recommendations of colleagues and friends, I obtained a copy 

of Greg Egan’s 1994 novel Permutation City (Egan, 1994). Set in the 

mid 21st Century, Egan gives a clear account of a hypothetical 

computing system, the Autoverse, that was successful in creating an in 

silico abiogenesis. What was surprising was Egan’s clear prescience 

about the actual details of the technical implementation and challenges 

that have been uncovered in building an actual system such as the 

EvoGrid. Indeed, the EvoGrid itself could be seen to be a significant 

step along the road to realizing Egan’s vision. For Egan starts his 

journey in the world of low level cellular automata from which, one day 

in the first decade of the Twenty First Century, the first EvoGrid’s 

atoms and molecules then arose.  
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It is therefore fitting to conclude this work with the following 

quotation from Egan’s Permutation City: 

 
Real-world biochemistry was far too complex to simulate in 

every last detail for a creature the size of a gnat, let alone a 
human being. Computers could model all the processes of life -- 
but not on every scale, from atom to organism, all at the same 
time (p. 26)… The individual cubic cells which made up the 
Autoverse were visible now, changing state about once a 
second. Each cell's "state" -- a whole number between zero and 
two hundred and fifty-five -- was recomputed every clock cycle, 
according to a simple set of rules applied to its own previous 
state, and the states of its closest neighbors in the three-
dimensional grid. The cellular automaton which was the 
Autoverse did nothing whatsoever but apply these rules 
uniformly to every cell; these were its fundamental "laws of 
physics." Here, there were no daunting quantum-mechanical 
equations to struggle with – just a handful of trivial arithmetic 
operations, performed on integers. And yet the impossibly crude 
laws of the Autoverse still managed to give rise to "atoms" and 
"molecules" with a “chemistry" rich enough to sustain "life." (pp. 
29-30) 
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Appendix A. Relevant and Previously Published Work 
 

A.1 Personal Recollection on the Origins of the EvoGrid 
 

In 1985 I was in graduate school at the University of Southern 
California in Los Angeles. There I found myself well endowed with computing 
resources by virtue of our department’s VAX 11/750 minicomputer, with a 
solid connection to the mid 1980s incarnation of the Internet. Together with 
an advanced Tektronix graphics terminal I set off programming a system to 
represent thousands of entities which would one day become a sort of digital 
adaptive soup into which I could pour a series of problems in image 
processing, and the entities would dutifully evolve the capability to accomplish 
pattern recognition in a much more expeditious way than simple linear 
algorithms or computationally costly methods such as the fast Fourier 
transform. My first problems were related to collegial resources: I had none. 
Nobody in my group in optical materials and devices, my advisor included, 
really had an understanding or an interest in this approach. I was able to find 
a compelling book published in the 1950s by John von Neumann on self-
reproducing automata but that was about the extent of the literature that I 
could find at the time. A field called “Artificial Life” was to emerge a couple of 
years later, but too late for me, as I took my leave of university to pursue a 
series of careers in the outer world. 

 

 
Figure 1 Charles University Math/Physics Faculty, Prague, 1993 (photo by 
the author) 

 
It is the spring of 1993 and I am standing at the front of a heavily 

vaulted 16th century classroom at the Mathematics and Physics Faculty of 
Charles University in Mala Strana (Figure 1), Prague. The iron curtain has 
recently dissolved away and I am in the country setting up one of the first 
commercial software groups for Elixir Technologies Corporation founded by 
my mentor Basit Hamid. As a member of the staff of a computer science 
department with practically no computers, I am trying to impart the art of 
computer programming to bright faced young Czechs. I put chalk to the black 
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board and start to sketch out visions for team projects these students will take 
on in a real personal computer lab we are building on the floor below. 

 
The projects offered were in innovative user interfaces, and object-

oriented programming, but the one that drew forth my passion, was to create 
a model of simple life forms that swim about in a digital universe, compete 
and evolve new traits. I realized even then that this project is way beyond the 
scope of a semester or two of part time work for these students. But I wanted 
to put it out to them anyway. This had been something I have attempted to do 
myself for over a decade but life’s basic needs had always intervened. I 
finished sketching out the projects and then glanced through the window 
where, towering above the university was Prague Castle. I realized with no 
small sense of irony that it was there four centuries ago that some of the first 
experimentalist, the alchemists, were chartered by Holy Roman Emperor 
Rudolf II to find a way to “bring dead matter to life” amongst other miracles. 
Another view from the Faculty building took one’s gaze over to the old Jewish 
quarter and the cemetery where arose the legend of the Golem, a 
programmatic clay humanoid robot gone amok through one change in the 
lettering of his code. I then recalled that the very term “robot” was coined by 
Czech writer Karel Capek from the word robota meaning “labor” or 
“drudgery". The automated figurines that emerge day after day from the clock 
in the nearby Prague old town square must have further inculcated the 
Bohemian mind to accept the automated person as an equal.  

 
It struck me that humankind’s quest to create life from parts that are 

not alive is very, very old. While it is a quest that predates Czech or even 
European civilization, I realized in that moment that it was here in central 
Bohemia that the belief in the inevitability of this outcome is perhaps the most 
deeply culturally ingrained. My selection of an “artificial life” project for these 
students to toil on in the very shadow of Prague castle paid intentional 
homage to this long tradition. While the students didn’t get far in that eight 
month project, I went on to carry this quest for the next decade, into virtual 
world Cyberspace, up to the Burgess Shale fossil beds, and on through a 
decade of work in modeling space exploration with NASA. 
 

In the spring of 1997 I found myself walking up to the entrance of 
Harvard University’s Museum of Comparative Zoology. I had an appointment 
to see renowned palaeontologist Professor Stephen J. Gould. Despite my 
nervous state, I was going forward with this visit in the confidence that I could 
build bridges between two very different communities: palaeontology and 
computer science. This mission had started with a lifelong fascinating with 
how living systems work at their lowest level. After being bit by the computer 
software bug in 1981 at our local community college I began to pursue a 
vision of virtual worlds, shared graphical spaces inhabited by users, but also 
be entities which would be governed by their own rules, some of them 
inspired by biology. In the mid 1990s I engaged in early seminal work in this 
area, founding the Contact Consortium, the first organization dedicated to 
multi-user virtual worlds on the Internet. I also authored the first book on the 
medium and some of the first publications.  

 
During the formative period in the summer of 1994 I visited Chris 

Langton at the Santa Fe Institute. Dr. Langton had coined the term “Artificial 
Life” in the 1980s and had helped to establish the Institute and semi-annual 
Artificial Life conference. I painted a picture for him of virtual worlds of a near 
future Internet which would be populated by millions of users and billions of 
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objects. I posed the question: “wouldn’t these worlds be ideal places for 
experiments in artificial evolution to take place”? This vision drove me on to 
California and the establishment of the Consortium and one of its first special 
interest groups, Biota.org in 1996. Biota.org created a forum for ideas and 
projects at the intersection of virtual worlds with biology. The first project of 
Biota.org was to build a virtual world that had generative biologically inspired 
elements, in this case digital plants “grown” by the L-System formalism 
defined by Lindenmeyer. This virtual world was presented as an installation at 
SIGGRAPH 1997 in Los Angeles and included in computer graphics 
publications. The second project of Biota.org was to initiate a conference 
series by holding an innovative first event that would attract a unique 
combination of people from different worlds. This is why I found myself in the 
office of Professor Gould at Harvard. 

 
As I had grown up in the mountains of south central British Columbia, 

Canada, I had heard about the famous Burgess Shale fossil deposits 
discovered by Charles Doolittle Walcott in the early 1900s. The fossils found 
in the Burgess Shale were the best preserved of representatives of fauna 
from the Middle Cambrian period over a half billion years ago. Professor 
Gould had written a book about the Burgess Shale called Wonderful Life 
which I read in the mid 1990s and moved me to bring the disparate 
communities together there for a conference. Organized with the support of 
Sara Diamond at the Banff New Media Institute, Banff Centre for the Arts, the 
conference was to feature a rather physically taxing hike to the actual Walcott 
quarry of the Burgess Shale followed by a meeting of minds for two days of 
comparative approaches to emergence in biology and in computer systems.  

 
Once in the front offices of Professor Gould’s laboratory I was directed 

by a graduate student back into the bowels of the fossil collection to find him. 
Dr. Gould greeted me warmly. I explained my vision for the conference to be 
held at and about the Burgess Shale. I knew he had travelled there once in 
the mid 1980s. He explained how he had made it determinedly up the 
mountain but had collapsed on the way down and had to be airlifted out. He 
also revealed to me that much as he would have liked to come to our event 
as a speaker, he was determined to finish his next book, which was he 
explained going to be possibly his greatest work. That book, The Structure of 
Evolutionary Theory was published in 2002 only two months after his death 
from cancer. I sensed an urgency in him that may have been born from his 
earlier bout with another form of cancer and, he thought, only temporarily 
beating the odds. 

 
Dr. Gould then said “well, I am not very digital” and pointed to the 

manual typewriter on a small desk sandwiched between stacks of fossil 
boxes against a window. He expressed interest in the results of our meeting 
and asked me to “keep him closely informed” and sent me packing with 
signed copies of several of his books. The event, which I had named Digital 
Burgess went off without a hitch and was given glowing reviews by many 
attendees and pointed out to me that the worlds of computer science and 
Palaeontology were about as far apart as any two fields could be. Computer 
scientists and programmers are world makers, able to draw from a seemingly 
unlimited store of virtual parts to create what they feel are worlds without limit. 
On the other hand, Palaeontologists are detectives, overwhelmed by data 
that often tells an incomplete or confusing story of a world that they do not 
have direct access to: the deep antiquity of early evolution on the planet. This 
became apparent during a conversation between rainforest ecologist (and 
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creator of the artificial evolution simulation Tierra) Dr. Tom Ray and chief 
Palaeontologist of the Burgess Shale, Dr. Desmond Collins of the Royal 
Ontario Museum. Framed by the actual rock face of the Burgess Shale 
(Figure 2), Dr. Collins explained how the genetic record of organisms of the 
Burgess Shale suggested that they traced their lineage back to a time much 
earlier than the 535 million year old fossils behind them. 

 

 
Figure 2 Two worlds meet, Dr. Tom Ray of the Tierra artificial evolution 
project (left) and Dr. Desmond Collins, chief Paleontologist for the Burgess 
Shale, Royal Ontario Museum, at the Burgess Shale, Canada, September 2, 
1997 (photo by the author) 

 
Wrapping up this long forward, this thesis is the result of quarter 

century of my personal quest to employ software, this new “playground of the 
mind”, to allow the human imagination to gain insight as to how life might 
have come into existence from nonlife. When the Evolution Grid (or EvoGrid) 
project was conceived and launched in 2007 it was first broadly and deeply 
described as an experiment in technogenesis, the use of technology to 
explore how the Genesis of life on Earth might have come about. It is in this 
spirit and in homage to those who have wondered and experimented on this 
theme for centuries past, that this endeavour is undertaken. 
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A.2 Book Chapter: Nerve Garden 
 
The following book chapter describing work completed in 1997 was 

published in Artificial Life Models in Software, Springer-Verlag, London, 2004. 
Reprinted by permission of the editors. 

 
Nerve Garden: germinating biological metaphors in net-based 
virtual worlds 

 
Bruce Damer, Karen Marcelo, Frank Revi, Chris Laurel 
Biota.org, Contact Consortium Special Interest Group 

 
Todd Furmanski 

University of Southern California 
 

Contact Consortium, P.O. Box 66866 
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1 831 338 9400 
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bdamer@ccon.org 
 
Introduction  
 
Nerve Garden is a biologically inspired multi-user collaborative 3D virtual 
world available to a wide Internet audience. The project combines a number 
of methods and technologies, including L-systems, Java, cellular automata, 
and VRML. Nerve Garden is a work in progress designed to provide a 
compelling experience of a virtual terrarium which exhibits properties of 
growth, decay and energy transfer reminiscent of a simple ecosystem. The 
goals of the Nerve Garden project are to create an on-line 'collaborative A-
Life laboratory' which can be extended by a large number of users for 
purposes of education and research.  
 
1. History and Background of the Project  
 
1.1 Artificial Life meets the World Wide Web 
 
During the summer of 1994, one of us (Damer) paid a visit to the Santa Fe 
Institute for discussions with Chris Langton and his student team working on 
the Swarm project. Two fortuitous things were happening during that visit, SFI 
was installing the first Mosaic Web browsers, and digital movies of Karl Sims’ 
evolving “evolving virtual creatures” (Sims, 1994) were being viewed through 
the Web by amazed students (see figure 1 and view on the Internet in the 
reference section at Sims, 1997). It was postulated then that the combination 
of the emerging backbone of the Internet, a distributed simulation 
environment like Swarm and the compelling 3D visuals and underlying 
techniques of Sims’ creatures could be combined to produce something very 
compelling: on-line virtual worlds in which thousands of users could 
collaboratively experiment with biological paradigms. 
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Figure 1: View of Karl Sims’ original evolving block creatures in competition  
 
One of the Contact Consortium’s special interest groups, called Biota.org – 
The Digital Biology Project, was chartered in mid 1996 to develop virtual 
worlds using techniques from the Artificial Life (ALife) field. Its first effort was 
Nerve Garden experienced as an art installation at the SIGGRAPH 97 
conference and made available on-line starting in August of 1997. Several 
hundred visitors to the SIGGRAPH “Electric Garden” Nerve Garden 
installation used L-systems and Java to germinate plant models into shared 
VRML (Virtual Reality Modeling Language) island worlds hosted on the 
Internet. Biota.org is now seeking support to develop a subsequent version of 
Nerve Garden, which will embody more biological paradigms, and, we hope, 
create an environment capable of supporting education, research, and cross-
pollination between traditional Artificial Life (ALife) subject areas and other 
fields.  
 
1.2 Background: L-Systems 
 
L-systems (Prusinkiewicz & Lindenmayer, 1990) have become a commonly 
used tool for many computer applications. Commercial 3D packages like 
Worldbuilder utilize L-systems to model and simulate vegetation 
(Worldbuilder, 2004).  Instead of hand modeling potentially thousands of 
trees, procedural generation offers a large amount of data compression, and 
an incredible amount of variance.  No two trees in a forest may look alike, but 
each could be identified as a pine or oak. 
 
While L-systems have classically been used to describe plants, there have 
been several cases in which the grammars and implementations have been 
used for other ends.  Karl Sims' own virtual creatures used L-system like 
branching structures.  Limbs and sub limbs, much like arms and fingers on a 
human, determined the basic structure of the evolved animals.  One program, 
LMUSe, converts L-system strings into MIDI format, transforming the systems 
into musical compositions (Sharp, 2003).  Instead of moving in world space 
and drawing to the screen, the program interprets the grammar as cues to 
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change pitch or transpose.  Famous patterns like Koch's Snowflake can not 
only be seen but also heard. 
 
L-systems have proven useful in modeling virtual cities (Parish, 2004).  Tasks 
from generating street layouts to house and building appearances have been 
accomplished using L-systems in one way or another. The advantages of 
compression and levels of detail apply just as well in a "built" environment as 
a "grown" one.  Buildings can show similarities, but nevertheless possess 
enough variance to avoid unrealistic repetition.  Architectural "styles" offer an 
analog to biological "species" in this sense.  The cities themselves can be 
seeded like forests, and expand over time, implying a complex history of 
growth and development.  Local and global factors can be incorporated into 
such growth, further adding to the complexity and believability of the city.  
  
The ability to generate complex geometries from simple rules means that, like 
Conway’s ”Game Of Life” (Gardner, 1970), L-Systems can be manipulated 
with a few simple parameters and permit children and adults alike to explore 
forms that with ordinary artistic abilities, they would not be able to express. 
The motivation for Nerve Garden was to permit ordinary users of the Internet 
to engage in this exploration using the familiar metaphors of landscapes 
featuring a range of L-system derived plant forms. 
 
2. Nerve Garden I: Inspiration, Architecture and Experience  
  

 
Figure 2: Nerve Garden interface in web browser 
 
2.1 Inspiration 
 
Nerve Garden I (interface shown in figure 2 above) is a biologically-inspired 
shared state 3D virtual world available to a wide audience through standard 
Internet protocols running on all major hardware platforms. Nerve Garden 
was inspired by the original work on ALife by Chris Langton (Langton 1992), 
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the digital ecosystem called Tierra by Tom Ray (Ray 1994a), the evolving 3D 
virtual creatures of Karl Sims (Sims 1994), and the Telegarden developed at 
the University of Southern California (Goldberg, 1995). Nerve Garden 
sources its models from the work on L-systems by Aristide Lindenmayer, 
Przemyslaw Prusinkiewicz and Radomir Mech (Prusinkiewicz & Lindenmayer 
1992) (Mech & Prusinkiewicz, 1996). 
 
2.2 Architectural Elements 
 

 
Figure 3: Lace Germinator Java client interface 
 
Nerve Garden I allowed users to operate a Java-based thin client, the 
Germinator (see figure 3 above), to visually extrude 3D plant models 
generated from L-systems. The 3D interface in the Java client provided an 
immediate 3D experience of various L-system plant and even some arthropod 
forms (see figure 4 below). Users employed a slider bar to extrude the 
models in real time and a mutator to randomize select production rules in the 
L-systems and generate variants on the plant models. After germinating 
several plants, the user would select one, name it and submit it into to a 
common VRML97 scenegraph called the Seeder Garden.  
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Figure 4: Lace Germinator Java client interface  
 
The object passed to the Seeder Garden contained the VRML export from the 
Germinator, the plant name and other data. Another Java application, called 
NerveServer, received this object and determined a free 'plot' on an island 
model in a VRML scenegraph (shown in figure 2 above). Each island had a 
set number of plots and showed the user where his or her plant was assigned 
by a red sphere operated through the VRML external authoring interface 
(EAI). Cybergardeners would open the Seeder Garden window where they 
would then move the indicator sphere with their plant attached and place it 
into the scene. Various scenegraph viewpoints were available to users, 
including a moving viewpoint on the back of an animated model of a flying 
insect endlessly touring the island (the bee and butterfly shown in figure 2). 
Users would often spot their plant as the bee or butterfly made a close 
approach over the island. Over 10MB of sound, some of it also generated 
algorithmically, emanated from different objects on the island added to the 
immersion of the experience. For added effect, L-system based fractal VRML 
lightening (with generated thunder) occasionally streaked across the sky 
above the Seeder Garden islands. 
 
NerveServer permitted multiple users to update and view the same island. In 
addition, users could navigate the same space using standard VRML plug-ins 
to Web browsers on SGI workstations, PCs or Macintosh computers from 
various parts of the Internet. One problem was that the distributed L-system 
clients could easily generate scenes with several hundred thousand 
polygons, rendering them impossible to visit. We used 3D hardware 
acceleration, including an SGI Onyx II Infinite Reality system and a PC 
running a 3D Labs Permedia video acceleration card to permit a more 
complex environment to be experienced by users. In the year 2004 and 
beyond, a whole new generation of 3D chip sets on 32 and 64 bit platforms 
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will enable highly complex 3D interactive environments. There is an 
interesting parallel here to Ray’s work on Tierra, where the energy of the 
system was proportional to the power of the CPU serving the virtual machine 
inhabited by Tierran organisms. In many Artificial Life systems, it is not 
important to have a compelling 3D interface. The benefits to providing one for 
Nerve Garden are that it encouraged participation and experimentation from a 
wide group of users.  
 
2.3 Experience: what was learned  
 
As a complex set of parts including a Java client, simple object distribution 
system, a multi-user server, a rudimentary database and a shared, persistent 
VRML scenegraph, Nerve Garden functioned well under the pressures of a 
diverse range of users on multiple hardware platforms. Users were able to 
use the Germinator applet without our assistance to generate fairly complex, 
unique, and aesthetically pleasing models. Users were all familiar with the 
metaphor of gardens and many were eager to 'visit their plant' again from 
their home computers. Placing their plants in the VRML Seeder Gardens was 
more challenging due to the difficulty of navigating in 3D using VRML 
browsers. Younger users tended to be much more adept at using the 3D 
environment. A photo of a user of the Nerve Garden installation at the Electric 
Garden emerging technologies pavilion at SIGGRAPH 1997 in Los Angeles is 
featured in figure 4 below. 
 

 
Figure 4: User at SIGGRAPH Nerve Garden Installation, August 1997 
 
While it was a successful user experience of a generative environment, Nerve 
Garden I lacked the sophistication of a 'true ALife system' like Tierra (Ray 
1994a) in that plant model objects did not reproduce or communicate 
between virtual machines containing other gardens. In addition, unlike an 
adaptive L-system space such as the one described in (Mech & 
Prusinkiewicz, 1996), the plant models did not interact with their neighbors or 
the environment. Lastly, there was no concept of autonomous, self replicating 
objects within the environment. Nerve Garden II will address some of these 
shortcomings, and, we hope, contribute a powerful tool for education and 
research in the ALife community. 
 
Did Nerve Garden attain some of the goals we set for presenting an ALife-
inspired virtual world? The environment did provide a compelling space to 
draw attention while also proving that an abstraction of a world, that of a 
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virtual forest of L-systems, could be transmitted in algorithmic form and then 
generated on the client computer, achieving great compression and 
efficiency. When combined with streaming and ecosystem controls, Nerve 
Garden II could evolve into a powerful virtual world architecture testbed. 
 
Visiting Nerve Garden I  
 

 
Figure 5: Bee flight through a Nerve Garden island populated by user-
generated L-System plants 
 
Nerve Garden I can be visited using a suitable VRML97 compatible browser 
running Java 1.1. Scenes like the ones in figure 5 above can be experienced 
in real-time rendered virtual islands that may be toured through the traveling 
“bee” viewpoint. All of the islands and L-Systems made at SIGGRAPH 97 can 
be viewed on the web at the references below. The Biota special interest 
group and its annual conferences are covered at http://www.biota.org.  
 
3. A Next Evolutionary Step: Nerve Garden II  
 
The Biota special interest group is seeking support for a subsequent version 
of Nerve Garden. Our goals for Nerve Garden II are: 

• to develop a simple functioning ecosystem within the VRML 
scenegraph to control polygon growth and evolve elements of the 
world through time as partially described in (Mech & Prusinkiewicz, 
1996);  

• to integrate with a stronger database to permit garden cloning and 
inter-garden communication permitting cross pollination between 
islands;  

• to embody a cellular automata engine which will support autonomous 
growth and replication of plant models and introduce a class of virtual 
herbivores ('polyvores') which prey on the plants’ polygonal energy 
stores;  
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• to stream world geometry through the transmission of generative 
algorithms (such as the L-systems) rather than geometry, achieving 
great compression, efficient use of bandwidth and control of polygon 
explosion and scene evolution on the client side;  

 
Much of the above depends on the availability of a comprehensive 
scenegraph and behavior control mechanism. In development over the past 
several years, Nerves™ is a simple but high performance general purpose 
cellular automata engine written as both a C++ and Java kernel. Nerves is 
modeled on the biological processes seen in animal nervous systems, and 
plant and animal circulatory systems, vastly simplified into a token passing 
and storage mechanism. Nerves and its associated language, NerveScript, 
allows users to define a large number of pathways and collection pools 
supporting flows of arbitrary tokens, token storage, token correlation, and 
filtering. Nerves borrows many concepts from neural networks and directed 
graphs used in concert with genetic and generative algorithms as reported by 
Ray, Sims (Ray 1994b, Sims 1994) and others. 
 
Nerves components will underlie the Seeder Gardens providing functions 
analogous to a drip irrigation system, defining a finite and therefore regulatory 
resource from which the plant models must draw for continued growth. In 
addition, Nerves control paths will be generated as L-system models extrude, 
providing wiring paths connected to the geometry and proximity sensors in 
the model. This will permit interaction with the plant models. When pruning of 
plant geometry occurs or growth stimulus becomes scarce, the transformation 
of the plant models can be triggered. One step beyond this will be the 
introduction of autonomous entities into the gardens, which we term 
'polyvores', that will seek to convert the 'energy' represented by the polygons 
in the plant models, into reproductive capacity. Polyvores will provide another 
source of regulation in this simple ecosystem. Gardens will maintain their 
interactive capacity, allowing users to enter, germinate plants, introduce 
polyvores, and prune plants or cull polyvores. Gardens will also run as 
automatous systems, maintaining polygon complexity within boundaries that 
allow users to enter the environment.  
 

spinalTap.nrv 
 

DEF spinalCordSeg Bundle { 
-spinalTapA-Swim-bodyMotion[4]-Complex; 
-spinalTapB-Swim-bodyMotion[4]-Complex; 

} 
 
Figure 6: Sample NerveScript coding language 
 
We expect to use Nerves to tie much of the above processes together. Like 
VRML, Nerves is described by a set of public domain APIs and a published 
language, NerveScript (Damer, 1996). Figure 6 lists some typical NerveScript 
statements which describe a two chain neural pathway that might be used as 
a spinal chord of a simple swimming fish. DEF defines a reusable object 
spinalCordSeg consisting of input paths spinalTapA and spinalTapB which 
will only pass the token Swim into a four stage filter called bodyMotion. All 
generated tokens end up in Complex, another Nerve bundle, defined 
elsewhere.  
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Figure 7: Nerves visualizer running within the NerveScript development 
environment  
 
Figure 7 shows the visualization of the running NerveScript code in the 
NerveScript development environment. In the VRML setting, pathways 
spinalTapA and B are fed by eventOut messages drawn out of the 
scenegraph while the Nerve bundles generate eventIns back to VRML using 
the EAI. Nerves is fully described at the web address referenced at the end of 
this paper. 
 
4. The Role of ALife in Virtual Worlds on the Internet  
 
4.1 Multi-user on-line worlds: a rich space for biological metaphors 
 
Multi-user “avatar” enabled Internet-based virtual worlds have evolved from 
relatively simple environments in the mid 1990s to multi-million dollar 
massively multiplayer online role playing games and simulations today 
(Damer, 1997). There is a large commercial and research driven motivation to 
create richer environments to attract and keep users of these on-line spaces. 
Techniques from the artificial life field, such as L-Systems, have become 
increasingly employed in online virtual worlds in the following roles: 

• To provide biologically inspired behaviors, including animated 
behaviors, growth and decay of the environment, and generation and 
mutation of non-player characters to draw users into these spaces, for 
purposes of entertainment or learning about the living world.  

• To power underlying architectures with biological metaphors.  
 
 4.2 Using ALife to draw attention span  
 
The commercial success of non networked CD-ROM games such as 
'Creatures' from Cyberlife of Cambridge, UK, Petz from P.F. Magic of San 
Francisco and the ubiquitous Tomogatchi of Japan have been successful in 
capturing the human imagination, attention span and the pocket book. For 
networked gaming in environments such as EverQuest™ The Sims™, 
AmericasArmy, Neverwinter’s Night ™, Second Life™ and Star Wars 
Galaxies™, the drive for more lifelike animation, better non-player characters 
and more rich and changeable worlds inspires innovative efforts within many 
projects. The third Biota conference held at San Jose State University in 1999 
(see Biota references below) focused on the application of ALife to this new 
world.  
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4.3 Artificial life techniques powering better virtual world architectures  
 
Players soon tire of key-framed repeatable behavior sequences and yearn for 
objects that seem to learn their moves through stimuli from the human 
players. Believable physics, non-canned motion, stimulus and response 
learning drive developers to borrow from biology. Pets and gardens, perhaps 
our most intimate biological companions in the physical world, would serve to 
improve the quality of life in the virtual fold.  
 
The key to delivery of better experiences to a variety of user platforms on low 
bandwidth connections is to understand that the visual representation of a 
world and its underlying coding need to be separated. This separation is a 
fundamental principle of living forms: the abstract coding, the DNA is vastly 
different than the resulting body. This phenotype/genotype separation also 
has another powerful property: compression. The VRML 3D scenegraph 
language simply defined a file format, a phenotype, which would be delivered 
to a variety of different client computers (akin to ecosystems) without any 
consideration of scaling, or adapting to the capabilities of those computers. A 
biologically inspired virtual world would more effectively package itself in 
some abstract representation, travel highly compressed along the relatively 
thin pipes of the Internet, and then generate itself to a complexity appropriate 
to the compute space in which it finds itself. 
 
As the virtual environment unfolds from its abstraction, it can generate useful 
controls, or lines of communication, which allow it to talk to processes back 
on servers or to peers on the network. These lines of control can also create 
new interfaces to the user, providing unique behaviors. One might imagine 
users plucking fruit from virtual vines only to have those vines grow new 
runners with fruit in different places. With non-generative, or totally 
phenotypic models, such interaction would be difficult if not impossible. As we 
saw from the example of Nerve Garden earlier in this chapter, important 
scenegraph management techniques such as polygon reduction or level of 
detail and level of behavior scaling could also be accomplished by the 
introduction of ecosystem-styled metaphors. If we define the energy state of a 
virtual world inversely to the computing resources it is consuming, as in a 
natural habitat, it would be inevitable for any scenegraph or objects in it to 
evolve more efficient representations.  
 
5. Other Examples of L-System-Based Virtual World Construction and 
Considerations for the Future Use of L-Systems 
 
Chojo, depicted in figure 8 below, is a current mobile project developed by the 
Integrated Media Systems Center and the Cinema Television's Interactive 
Media Department at USC. Chojo makes use of emergent L-system rules, but 
uses the movements of human participants in the physical world as a primary 
generative force (Chojo, 2004).  Tracking users through GPS, Chojo maps 
movements, path intersections, and user defined “traits” and uses these data 
to generate evolving shapes in a virtual space.  A point in this virtual space 
can be viewed from a corresponding physical space…a viewer in front of 
undergraduate library might see a series of vine and crystal like structures 
covering the building through their PDA.   
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Figure 8: Visual output from USC’s Chojo 
 
Exterior forces can continue to enhance a-life systems.  Tropism, for 
instance, can alter a branching pattern globally (Hart, 2003).  Forces like wind 
and gravity change the way a tree grows, for instance.  Flowers and leaves 
move to seek sunlight.  L-systems can accommodate such external forces, 
adding a further lifelike quality.  Tropism could also be used in a more 
abstract sense, depending on the context of the L-system.  For instance, 
variables like population density could be integrated into an algorithm 
describing a city, or various goals and wants of a virtual creature could ripple 
through its physical structure. 

 
The recursive and parametric nature of L-systems and other emergent 
algorithms means that a computer and handle and display varying degrees of 
resolution and detail.  Networked applications like Nerve Garden must take 
into account computers of varying speeds and abilities.  The ability to easily 
generate variable complexity from a fairly simple set of equations or library of 
shapes means that a world generated through these emergent methods can 
be as simple or complex as the machine allows.  
 
We hope that the scope of projects like Nerve Garden will continue to expand 
not just in size but in relationships.  In the physical world terrain affects how 
plants grow in a given area, but the terrain itself can change because of the 
presence of plants:  A hillside without trees will be susceptible to landslides 
and erode from the wind.  Animals migrate when their food supply dwindles, 
either due to season or overpopulation.  
 
Much of the emergent and complex nature of artificial and real life arises from 
the interaction of fairly simple rules. The algorithmic principles underlying this 
complexity are often hard to divine in nature, yet casting biologically-
suggestive rule-bases (such as L-Systems) in software and observing the 
results can prove challenging, entertaining, and informative. 
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A.3 Book Chapter: The God Detector 

This book chapter was published in 2008 in Divine Action and 
Natural Selection: Science, Faith and Evolution, Eds.: R. Gordon & J. 
Seckbach. Singapore, World Scientific: 67-82. Reprinted by permission 
of the editors. 
 
 
The God Detector 
A Thought Experiment 

Disclaimer 
 
I am a technologist, and in this piece I shall approach the key questions of 
this book as a programmer and historian of technology. In my treatment I will 
not consider influences of the Divine in our lives in terms of matters of the 
heart, faith, hope, or the rest of the human cultural milieu. I will simply take on 
the claim made by some that God plays an active ongoing role in the 
mechanics of the universe and in the evolution of life. To me this seems like a 
question best approached from an engineer’s frame of reference. A good 
starting point is to consider the lessons learned and the questions raised by 
those of us engaged in the new field of “artificial life”. 
 

The Artificial Life Programmer, the New Alchemist? 
 
Like medieval alchemists before them, programmers developing artificial life 
software (often shortened to “A-life”) are drawn to the elusive yet seductive 
proposition that they have the power to animate inanimate matter (Farmer & 
d’a Belin 1991). In this modern reincarnation of alchemy the inanimate 
medium is a microscopic substrate of billions of transistors. Popular media 
from science fiction to Hollywood often depicts A-life as computer viruses and 
self-reproducing robotics running amok. This means that A-life practitioners 
(in academia or the hobbyist community) attract quite a bit of press, much of it 
sensational. As a result, in these reports we are rarely treated to the subtle 
issues and challenges faced by coders of biologically-inspired virtual worlds. 
 
Another key point is that there is often confusion between the fields of 
artificial life and artificial intelligence (AI). A-life developers agree that theirs is 
a “bottom up” approach wherein they simulate a large number of interacting 
components employing relatively simple rules from which complex behaviors 
of a whole system emerge (Langton 1991). AI on the other hand tackles the 
ever receding goal of creating a “conscious” entity with which we would one 
day be able to communicate. The apocryphal moment of the coming of 
walking, talking machine intelligence is sometimes referred to by pop-culture 
practitioners as “the singularity” (Kurzweil 2005). To complicate matters 
further, developers of A-life software cannot even agree on what defines an 
“authentic” A-life implementation. 
 
Still, out of all of this confusion emerge some insights we could apply to the 
Intelligent Design/Creationism vs. Evolution/Science discussion. But before 
we can draw a hasty conclusion as to whether an artificial life programmer is 
acting as an “artificial god” (Adams 1998) and “intelligent designer” of his or 
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her own authentic little virtual universe we have to understand the two 
diametric poles of the A-life continuum. 
 

Two Kinds of God in the A-life Universe 
 

 

 
Figure 1: Karl Sims’ Evolving 
Virtual Creatures (1994). 

 Figure 2: Will Wright’s game 
Spore (2007). 

 
Perhaps the best way to classify A-Life software is to look at two ends of a 
continuum represented on the one hand by Karl Sims’ Evolving Virtual 
Creatures (Figure 1) and on the other by Will Wright’s game Spore (Figure 2). 
Karl Sims’ creatures started life as a simple pair of hinged blocks in a virtual 
universe that simulated basic physical properties such as fluid, collisions, 
gravity, and surface friction (Sims 1994). From that point on the simulation 
was allowed to continue on its own without human intervention. The creatures 
would perform simple tasks such as swimming or walking, or competing with 
other creatures for control of a block of “food”. The best performers were 
allowed (by the system software) to reproduce. Random mutations were 
introduced automatically into the “genome” of the creatures between 
generations, affecting the external body shapes or internal control functions. 
In this completely “hands off” A-life system the virtual creatures “evolved” 
many of the same mobility strategies found in nature (swimming with four 
paddles like a turtle, slithering like a snake, or perambulating like a gorilla). All 
of these behaviors emerged without human programmer intervention.  
 
In contrast, the computer game Spore, which is being developed by Will 
Wright of the Maxis-Electronic Arts Company, bears only a passing 
resemblance to an A-life environment. The release of Spore in 2008, will, 
however, be heralded as an “evolution” or “biological” game and yet most 
activities are largely directed by the human player and built-in procedures. 
Players use editor tools to design creatures, landscapes, dwellings and 
vehicles, guiding virtual creatures who inhabit toy planets to live out virtual 
lives from primordial soup to the space age. The populations “evolve” through 
procedural algorithms until the player (or game code itself) again intervenes 
to keep the action moving forward. 
 
Given this continuum, we posit that there two kinds of God in the A-life 
universe: the Karl Sims’ God the Mechanic building the machine that is the 
whole simulation, setting its initial conditions and then returning only 
occasionally to view the current state of the simulation; and Will Wright’s God 
the Tinkerer, constantly poking and prodding to tweak the mechanisms of 
virtual creation. Clearly these definitions might also apply to different 
extremes of god traditions found in human cultures.  
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There are two key kernels of truth that we can winnow from these early 
decades of A-life alchemy: 
 

Kernel 1: That all attempts to render life down into its basic elements 
and then represent it abstractly come down to: a) creating an 
algorithm for making copies of the blueprints to make yet more 
algorithms and b) that imperfect copies of these blueprints are 
sometimes passed on, creating variations and, possibly, 
advantageous adaptations.  

 
Kernel 2: That after these algorithms run for a while, passing on a 
great number of blueprints and interacting within some kind of a 
simulated virtual environment, the whole system reaches a tipping 
point where, to our perception, it becomes opaque to complete 
understanding. Thereafter even the A-life developers themselves must 
assume the role of a biologist, dissecting the genomes of their virtual 
creatures or examining their “fossil record” looking for clues to what 
the process of artificial evolution hath wrought. 

 

Lost in the Noise of the Data Explosion 
 
Thus, the observer of the biologically inspired software simulation soon 
becomes “lost in the noise” (Negroponte 1995), much as a biologist might 
spend a lifetime to grasp one small aspect of the stupefyingly complex 
machinery of a single cell. 
 
I propose that this property of onset opacity also holds for the world’s 
religious traditions. For each there was an original prophet, and an original 
set of core stories and concepts (some new, some drawn from prior 
traditions). Once the copying of these stories got underway, a mutation and 
adaptation process began. The resulting data explosion of writings, stories, 
laws, debates, schools, conflicts, extinct lines, and new branches soon 
obscured many of the original statements attributed to the founding prophets. 
Religious seekers (and even many serious researchers) are unable or 
unwilling to apply reductionist methods to prune out later inserted, 
contradictory or inconsistent yet closely held beliefs or writings. In addition, 
modern monotheistic religions stand upon foundations of earlier belief 
systems, most of which carry no written record. Therefore, fundamental 
questions about God and the universe that might emerge from any religious 
tradition are likely to remain lost in the largely opaque “tree of noise” of 
religious histories and discourse. In other words, if at any time God ever 
made Himself unequivocally visible to a human being and uttered or 
physically manifested anything about life or the universe, that original direct 
experience of God’s existence has become irretrievably lost. In modern times, 
no verifiable experience of God’s presence in the physical universe that is not 
explainable by other means has been observed. Therefore, if we cannot 
validate the original claims, or detect any direct physical influence today, we 
have to look for evidence of God’s Hand at another level. 
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The God Detector 
 
For some of the other authors of this book, prior writings about God, or 
personal (but unverifiable) experiences of God is evidence enough of His 
existence. However, when making a strong claim about God the Intelligent 
Designer, such empirical evidence is not good enough to make the case. If 
God is a programmer tweaking the code of the physical observable universe 
(not just affecting our own independent thoughts) his influence has to be 
detectable and independently verifiable. To sense the hitherto unseen Hand 
of God, we hypothesize that is might be possible to employ a God Detector 
which could either be found or built. We will first take on the challenge of 
identifying an existing natural God Detector and later on in this chapter, 
consider building a God Detector using human technology. If you will indulge 
me, dear reader, I invite you to join me in the following thought experiment 
surrounding the quest for the God Detector. 
 

Finding the God Detector 
 
How to look for signs of God’s influence comes down to where to look for 
them, and that comes down to what you look at and what you exclude looking 
at within the universe. 
 
For a time, I set down my pen and declared to myself that this was an 
unsolvable problem. A few days later I was reading a history of the Institute 
for Advanced Study in Princeton in the USA where I am a currently a visitor. 
A brilliant account of John von Neumann’s digital computer designed and built 
at IAS in the late 1940s contained an account of an impassioned researcher 
named N. Barricelli who was developing “numerical symbioorganisms” for this 
pioneering digital computer (Dyson 1997). I was stunned to realize that on a 
machine of such tiny capabilities, Barricelli was able to run basic artificial life 
code thirty five years before the term was coined.  
 
This led me to the following insight: what if the universe could be reduced 
down at the lowest levels to a programmable machine running algorithms? 
Several theories of how the universe works at the quantum level propose that 
this is in fact how things work (Lloyd 2006). I realized that if you can render 
the universe’s operation down to simple algorithms, basic questions could 
then be asked, and a natural God Detector could be found at a key code 
location found within one of the universe’s algorithms.  
 

God and the Copying Rule 
 
A living organism differs from bare rock, gases or a pool of liquid in one very 
specific way: the living organism contains instructions that are copied, for the 
most part unaltered, from one version to the next. In fact the organism must 
copy these instructions or face extinction. Thus, there would be no copying 
mechanism if previous copying mechanisms ceased to work, so copying 
mechanisms can and must continue to copy. This is the Copying Rule, and, 
as we have seen previously, it can also be found at work in human culture, 
where language permits the telling and retelling of a story, and also within the 
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new medium of digital computers and networks, where programs are copied 
between computers. 
 
The universe contains a large number of seemingly copied objects, from 
rocks to stars to galaxies, but the process by which these objects were made 
did not involve construction from a blueprint, instead their existence is owed 
to the laws of physics applied to starting conditions. Therefore, as far as we 
know, all matter and energy in the universe inhabits one of two organizational 
regimes: 
 

Regime 1 which is governed 
by… 

Regime 2 which is governed 
by… 

• Formulaic Laws of Nature 
• An element of uncertainty, or 

randomness we might call 
“R” 

• Formulaic Laws of Nature 
• An element of uncertainty, or 

randomness we might call 
“R” 

• The Copying Rule 
 
As we infer from the above table, along with the Laws of Nature and the 
Copying Rule, another of the distinct organizing operators of the universe is 
the element of uncertainty. This could be thought of in terms of unpredictable 
(i.e. random) effects either from some source in the very small (quantum 
fluctuations for example) or the very large (the mass overlapping effect of 
gravitational forces from atoms, stars and galaxies for example). We will take 
up this operator “R” later as it is the pivot on which this simple thought 
experiment turns. 
 
The Copying Rule is well understood in molecular biology. For each genotype 
(information blueprint encoded in a cell’s  nucleus) a phenotype (a living body 
or other resulting output) is produced. The Copying Rule as seen operating in 
human culture is less well understood but clearly occurs. Copy-able cultural 
objects such as ideas, stories, music or instructions are sometimes referred 
to as “memes” within a new field called “memetics” (Dawkins, 1976). Clearly, 
technological objects (where copies of objects are made with reference to 
instructions) also execute the Copying Rule. As we addressed previously, a 
sub-specialty of computer software called artificial life attempts to emulate the 
biological implementation of the Copying Rule by creating software analogues 
to genotypes and phenotypes. More radical thinkers consider all software, 
such as ordinary applications like word processors, to also execute the 
Copying Rule with humans acting as the phenotype (the host) that is the 
mechanism to enable the copying of these programs (Dyson 1997).  
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A Simple Model of the Copying Rule 
 

 
Figure 3: The Copying Rule. 
 
A simple model of the Copying Rule is depicted in Figure 3. An input 
sequence of information, which could be encoded in molecular material, 
language or computer code, enters a copying mechanism upon which some 
random input R may or may not act, and two or more resultant output 
sequences are produced, some of which may contain random changes. 
There are variations of this mechanism, one that would take two input 
sequences and combine them into an output sequence. A Copying Rule 
could be said to have been “successfully executed” if the output information 
sequence is not so altered that it could not be used to produce a future copy. 
A “failed” application of the rule produces a sequence that can never again be 
copied. 
 

Scope and Time Scales of the Copying Rule 
 
The Copying Rule is the central driving mechanism within biological evolution, 
cultural evolution and technological evolution and operates across a range of 
time scales and scopes: from billions of years to kilo-years for molecular 
evolution to years or days for cultural evolution, and days to milliseconds for 
evolution in information systems (see table below). 
 

Molecular copying 
4 billion to1 kilo-
years 

Cultural copying  
1 kilo-year to 1 
day 

Digital copying  
1 day to 1 
millisecond 

• Development of 
multi-cellular life 

• Divergence of 
Galapagos finch 
populations 

• Rise and fall of a 
great empire (or 
religion) 

• Spread of hoax 
on the Internet 

• Spread of virus 
on the Internet 

• 1 millisecond of 
computation in 
SETI@Home 
grid 

 

How God the Intelligent Designer Engages the Copying Rule 
 
A “designer” is someone who makes a plan for the future and instructs other 
people or mechanisms to bring that plan into reality. If God is acting in the 
universe as an “intelligent designer” and desires to operate in places where 
there are living things, then He has no choice but to engage the Copying 
Rule.  
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God has two obvious ways to interact with Copying Rule: 
  
1) God would engage the Natural Laws that make the copying happen or 
2) God would influence the operation of the Copying Rule by engaging the 

nondeterministic forces we call R, which create the imperfections or 
mutations in the copying process. 

 
Common sense dictates that God cannot use both of these mechanisms at 
the same time as they work in opposition. For example, while the laws of 
gravity cause a feather to fall predictably, the random motions of the air 
through which the feather travels produce an unpredictable landing place.   
 
By calling God a “designer” it is implied that He an actor upon the forces that 
shape the universe and is not those forces themselves. A God who is 
operating solely through deterministic laws is a God with no free-will. These 
laws affect the universe in pre-ordained ways with predictable outcomes. 
After the creation of the universe (and these laws) this God the Mechanic 
would simply leave the universe to run on autopilot and thereafter be 
undetectable. 
 
If God cannot suspend or change the natural laws, then He might operate by 
introducing imperfections as a tinkerer in the mechanics of the Copying Rule 
shifting the application of the randomizer R to cause accumulated errors in 
the copying process that would give rise to our world (Figure 4).   
 

 
Figure 4: The accumulating effects of R through time. 
 
Perhaps God could decide to permit R to affect the copying mechanism or 
not, or He could choose to proactively add to or subtract from the influence of 
R by a large enough amount to “tip the balance” in favor or one copying 
outcome or the other. In this case the Hand of God should be detectable as 
localized statistically anomalous behavior in an otherwise uniformly 
distributed random landscape of R. The monkey wrench in these works is that 
R itself is by definition unpredictable. If R is governed by some Natural Law or 
mathematical formula then it would not be R. If God could predict the future 
value of R and act accordingly then we would have our God the Mechanic 
back. So God, just like the rest of us, has to live with the unpredictability of R 
(Figure 5) and would seem to us to operate not by absolute Will but by Whim. 
This kind of God would hardly be able to exercise much design upon the 
universe.  
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Figure 5: What is affected by R? 
 

The Monk and the Copying Rule 
 
Here is where our thought experiment could use a bit of help from a 
hypothetical real-world example. Picture a literate monk, working at his table 
some time in the early years of Christianity. He is given a book written in 
Hebrew to translate into Greek. In it is a section of a passage: 
 

“…and Jesus was born to the young girl Mary” 
 
Reaching for his Hebrew-to-Greek dictionary scroll and not finding it, he sighs 
and makes a guess, translating the phrase to: 
 

“…and Jesus was born to the virgin Mary” 
 
Perhaps random fluctuations in air molecules contributed to a puff of air that 
nudged the dictionary scroll from the table, and hence caused the translation 
of “young girl” to “virgin”. Many scholars believe that this translation error 
actually occurred (Brown 1977, Pagels 2003) and led to the concept to the 
“virgin birth” or “immaculate conception” in the Catholic tradition. The resulting 
impact of this was substantial for the future of Christianity, leading to its wider 
adoption throughout the Mediterranean, where there were existing religious 
movements that also believed in spiritual power emanating from a virgin birth. 
The virgin birth idea also led to the suppression of women (whom evidence 
suggests were treated more equally in the early church) by enforcing male 
celibacy and sequestering devout and intelligent females away in convents. 
Male domination of the early church was therefore assured, which eased the 
integration of the religion into Roman power structures. The supernatural aura 
of the virgin birth also propelled the character of Jesus along a road that led 
to his elevation to Godhood following the Council of Nicaea in the fourth 
century. 
 
Would God have had a hand in this fateful application of R to the translation 
of early Christian texts? Certainly if it was God’s intention as an Intelligent 
Designer to promote Christianity as a new religious force (at the cost of 
existing belief systems) then we might say “yes”, God influenced the 
movement of air molecules, at the quantum level, at that critical juncture. 
 
However, God would have to have done more than just arrange for the 
translation error. God would also have to ensure that the proof-reading senior 
monk, upon seeing this one term, would not find it erroneous and send it back 
for correction. In addition, the natural error correcting mechanisms of the 
followers of the Hebrew version would have to be overcome. In practice, each 
small change affected through an influence of R (which is by no way 
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guaranteed to work given the unpredictable nature of R) is followed by a 
virtually uncountable large number of subsequent required adjustments that 
require almost total foreknowledge of every action. It seems that God’s task in 
influencing history in this way would require a brain that would be large 
enough to store all possible outcomes while executing perfect adjustments of 
random effects to guide each step. The size of the required decision-tree for 
even relatively small scale design changes might exceed the size of the 
countable particles in the universe. Amazingly, each Monk’s brain contains a 
number of unique pathways through its neurons that already exceed this 
number. At the finest level of detail, God’s brain would have to account for 
each of these neural pathways and be able to affect the journey of each 
electron. We are fast approaching an event horizon of total implausibility. 
 
Cultures all over the world attribute “god-like” powers to those who seem to 
be able to repeatedly “beat the odds” in dice-tossing, in war, in procreation, or 
in longevity. However, no documented case of the conquest of tremendous 
odds has ever been produced. Methuselah’ 969 year lifespan, and other 
miracles live strictly in the domain of mythology. It would seem that God is as 
powerless to affect next toss of the dice as the rest of us. 
 
Many believers might state here that God is a separate, all-knowing, 
omnipotent actor for whom the universe is a mere toy. In this case then He 
could choose to be detected or not and we would be powerless to make 
inquiries about His existence or nature (in which case there is no reason for 
this book to exist). So let us return to reason and consider God as an actor 
within the universe subject in some way to its laws, rather than an 
incalculably large and immeasurable actor separate from everything. 
 

God the Intelligent Adapter 
 
But wait, there is another way to affect the application of R in the Copying 
Rule, and that is through adaptation, after the copying is completed. Every 
single celled organism in Earth’s early seas that suffered an injustice due to 
physical or chemical fluctuations, heat, cold or an attack had a chance to 
adapt to the situation and survive to reproduce another day. The machinery of 
adaptation adjusts for the ravages of R and therefore diminishes and 
redirects its impact into the future. 
 
So could God in fact be living at “the output end” of the Copying Rule, in the 
land of adaptation? If so, God’s Hand would be busy helping adapt everything 
from cellular machinery on up to guiding the entire biosphere through the 
slings and arrows of large scale misfortunes such as meteor impacts. 
 
In human culture, intelligence emerged as a critical adaptation. Might 
intelligence therefore be a place where the mark of God is the strongest? 
Would God then not be an Intelligent Designer but instead be a Designer of 
Intelligence? Would any act of intelligence be an act of God, regardless of the 
outcome? If God is trying to effect some kind of perfect design upon the 
universe then influencing outcomes of adaptation might be just as numerically 
challenging as trying to control individual applications of R. Just as in our 
monk’s brain example, God is again relegated to being an imperfect player, 
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making do with a limited ability to influence adaptations to direct the future of 
life. 
 

God, Life, the Universe and Everything 
 
So we return to our original question: if God is an actor in the universe and 
we render the universe down to its simplest organizing principles, then God 
must have some kind of fundamental relationship with the Copying Rule. We 
have decided that, for our purposes, we are not considering a God the 
Mechanic, who simply sets up the initial Laws of Nature and then departs the 
scene. If our God is actively tinkering then He could only affect the progress 
of life and culture in two ways: by affecting the unpredictable R value that 
randomly affects copying machinery, or by working His miracles on the output 
side of the Copying Rule that adjusts for the influences of R through 
adaptation. 
 
We concluded that God could not affect any kind of predictive design on the 
universe by trying to influence the unpredictable effects of R as copying 
occurs. God’s information processing capability would probably have to be 
many times the size of the universe for even minor adjustments to the future 
and therefore He could not be an actor in the universe. 
 
This left God only one place to act, as a player in assisting the power of 
adaptation at the output end of the Copying Rule. Thus, God would not be an 
Intelligent Designer but instead could be thought of as an Intelligent Adapter. 
If God is indeed operating at the adaptation end of the spectrum, then there is 
no difference between God’s work and the work of evolution through Natural 
Selection or engineering through human intelligence.  
 
For example, a human technologist using his or her own intelligent genetic 
engineering skills or the processes of Natural Selection over eons could both 
create a fish that can live in near-boiling water. To those who did not witness 
the processes of the engineer or Natural Selection, this fish would be 
indistinguishable from a miracle from God. Would then believers be forced to 
conclude that Natural Selection or human genetic engineering must be 
equivalent to the Hand of God or that God’s Hand need not be present at all?  
 
In conclusion, given all the above uncertainties the Copying Rule, when 
pressed into service as a natural God Detector, is unable to permit us to 
unambiguously detect any unique sign of the Hand of God. 
 
Where does this leave the believer and the non-believer? Those who still 
wish to include the presence of a God the Tinkerer in the universe could still 
invoke a vision of God the Intelligent Adapter, playing an ongoing (but by no 
means exclusive or unique) hand in the survival and glorious diversification of 
life as well as the blossoming richness of human culture and technology. 
Those who find no need to place an actor like God in the picture can 
celebrate and seek to better understand the process of billions of years of 
evolution by cumulative copying and adaptation, made even more astonishing 
by the very fact that no hand guided it. Stuart Kaufmann may show us 
another way, in which he redefines God “…to mean the vast ceaseless 
creativity of the… universe” (Kaufmann 2008). If God is embodied in the artful 
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adaptation on the output end of the Copying Rule then He is the agency of 
the seemingly miraculous processes of Natural Selection and Emergent 
phenomena.  
 

Afterthought Experiment: Building a God Detector 
 
What if our cumulative technology including computers, networks, robotics, 
sensors, and Cyberspace, is creating a set of tools which we can use to 
determine, once and for all, whether God exists? And if so, might we also be 
able to use these tools to determine God’s nature and the exact means by 
which He manifests in the world? If we as a species could answer the 
question of the presence of deity in the world it would save untold future strife 
and focus our intellectual and artistic pursuits like never before.  
 
What if we could “set a trap for God”, a place where God could not resist 
manifesting His Will? What I am proposing is to engage all of the best 
programmers, artists and philosophers of our generation to create a gigantic 
network of software and computers, working to create a sort of “Evolution 
Grid” or “EvoGrid” (Damer 2008). This EvoGrid would start out as God the 
Mechanic (like Karl Sims’ creatures) in which we build the simulation, set the 
initial conditions and then let the artificial ecosystem go from there.  
 
Indeed, such a simulation might satisfy Richard Gordon’s challenge in the 
chapter Hoyle’s Tornado Origin of Artificial Life, A Computer Programming 
Challenge found in this volume. The EvoGrid would therefore seek to show 
that in amongst the vast machinery of the natural laws, and despite the chaos 
of R, the universe (or God acting within the universe) possesses the innate 
property to instantiate the Copying Rule and generate us. 
 
However, the EvoGrid could be set up to also embody some of Will Wright’s 
God the Tinkerer, with people in the loop. The way this might work is that the 
creatures of this simulated ecosystem would systematically consume all of 
human language and culture available to them in the semantic flow of the 
Internet. Every piece of text, image, music or video, blog, or other cultural 
artifact would be both the landscape and foodstuffs for the EvoGrid. The 
creatures of the EvoGrid would continuously adapt to the myriad streams 
traveling along the growing cyberspace synapses of the collective human 
mind. The EvoGrid would communicate in its own language which we might 
be able to understand.  If there was ever any medium through which God 
could speak to us, this would be it. Gerald de Jong claims that artificial life 
and the EvoGrid might be our way to finely polish a mirror we could then hold 
up to ourselves (de Jong, 2008). Would we then see the face of God? 
 

Giving Birth to God 
 
In our age old quest to detect and define God, there might be another 
ultimate outcome in store for us. Over the coming eons, would our own divine 
creations, such as the EvoGrid, allow us to merge with all living things, and 
transform and connect all of technological and biological reality? Would we 
then survive long enough to contact and combine with the EvoGrids of other 
sentient civilizations? If we never detected God in our own EvoGrid it would 
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no longer matter because in some far distant time all sentient minds, 
biological bodies, and technological creations would ultimately merge into one 
total universal life form. If the universe succeeds to birth itself as one 
conscious entity, everything, including us and all of our past selves, will unify 
into a single being which we will then call… God the Universe.  
 
So perhaps God is nothing more and nothing less than an expression of our 
hopes and dreams for that distant possibility. 
 
“God who created all things in the beginning is himself created by all things in 
the end” (Stapledon 1937). 
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A.4 Article on EvoGrid in New York Times, Sept 28, 2009 
 
The following article in the New York Times from September 28, 2009 is 
reproduced by permission of John Markoff and the New York Times. 
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Appendix B. Records from the Origin of the EvoGrid Idea 
 
 
B.1 Summary of Meeting with Richard Dawkins, Jul 10, 2000 
 
Present: Bruce Damer, Stuart Gold, Richard Dawkins, Oxford, U.K. 
 
Report of this meeting presented to members of the Biota.org SIG of the 
Contact Consortium and others. 
 
I am excited and pleased to tell you that we had a very positive meeting with 
Richard Dawkins at his home in Oxford today. In short, he has agreed to 
serve to support our cause, from being part of the advisory board, to 
recommending other advisory group members (ie: big names), providing 
leads on possible funders, guidance on criteria and format, and generally 
being enthusiastic. He even presented a viable method to carry on the annual 
competition which is: give an annual award to the system exhibiting the most 
lifelike qualities but don't go for a "holy grail" approach... but reserve that and 
the ability to evolve the criteria as time goes by. He recognized that this is 
less of a big attractor but is in fact more practical, preventing us from unduly 
restricting the criteria, or awarding the prize "too soon" when we are 
expecting to see better results in subsequent years. This in fact like climbing 
Mount Improbable from the back side, the gentle slopes, like nature herself. 
We may ultimately be able to offer a "holy grail" final prize.  
 
He was impressed by our (well my) confidence on being able to raise the 
ultimate 1$ million prize (which funds an annual endowment). He then 
mentioned a Jeffrey Epstein of New York who in a recent dinner with him and 
Lala (his wife). Jeffry is a very wealthy man and had asked Dawkins what 
might be a good use for some of his money. Dawkins had said that funding a 
prize would be and they came up with a couple of options (discoverer of life 
on another world etc). Dawkins thought that this indeed would be something 
worth approaching Epstein about. 
 
He was very keen on the potential educational benefits produced by all of 
this... and being able to simulate evolution and life to understand it. He is 
passionate about any move to give the public a greater understanding of 
evolution. I suspect he likes anything to fight the effects of the creationists 
(and he mentioned them by name). He noted that the project could backfire in 
that if we could show that "alive" systems could actually be instanced in a 
built world (the computer) that the creationists might take this as evidence for 
god. 
 
He asked us about possible worries about how "viral" systems of the prize 
could be mixed up with the idea of malevolent computer viruses. However, 
we talked about this for some time and concluded that the aliveprize could 
provide a group of serious practitioners in the field who could develop an 
immune system or practice against the element of malevolence. For example, 
if your system was malevolent you would be disqualified from the competition. 
Systems could run in virtual machines or even feed directly from the nets own 
streams (a more natural environment). 
 
We talked about other big names to be included on the advisory board level: 
Dan Dennett, Ted Kaehler, Danny Hillis, Kevin Kelly (without becoming "too 
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California") and I suspect he would help us recruit these too. I suggested 
Chris McKay (who is an exobiologist Dawkins knows of), Karl Sims, 
anthropologists (i mentioned CONTACT COTI) and others. We spoke of 
Steve Grand and Chris Langton. He had also read a post or two by Larry 
Yaeger so we talked about him too. 
 
I spoke about our work with NASA on a virtual solar system and he 
mentioned Carolyn Park or someone on Cassini. 
 
A workable structure emerged from the discussions.. 
 
Advisors 
********** 
A board of "big name" advisors lending their credibility who would not have 
much time to commit but would be happy to come to and present at some of 
the conferences (at least a few at each). I described what we want to do for 
the "grand opening" event this fall and he was very keen to participate. 
 
The Testers 
************** 
The advisors might recommend these folks, they might be their colleagues, 
graduate students etc. These folks would sift and shortlist the submitted 
environments. Others might come up with testers too. Another group of 
testers would evaluate the biotic virtual environments against the evolving 
criteria and perhaps run these by some of the advisors who had time that 
year. 
 
Practitioners 
*************** 
Developers and submitters of systems. These would create their own 
networks of cooperation within the competition. 
 
Organizers 
************ 
Well you know about these folks! 
 
Other points.. 
*************** 
He agreed that virtual worlds could be rich environments to evolve and 
visualize these systems in. 
 
We agreed that each system has to be executable and viewable over the net, 
accessible by the public (at least some level of it). 
 
He took my book off his shelf and asked questions, showing his interest in the 
virtual worlds medium and we talked about the social and memetic power of 
the medium. I am hoping to interest him on the memeflow and evolving 
properties of inhabited cyberspace for a next book. 
 
He seemed to not disapproved of the name "AlivePrize" but wanted to see 
what it looked like "in text on the computer" 
 
In summary 
************* 
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So after this stream of consciousness, the upshot is that with this one key 
endorsement, I feel we are GO for this project and that the viability of the end 
of year announcement (DB4) is very high. Dawkins has agreed to come and 
address the assembled group. A lot of work remains to be done, and 
recruitment, and fundraising, but I feel that this one is the next mission for 
Biota.org and indeed possibly the next frontier for this very creative edge of 
Humanity. 
 
I look forward to us all taking an amazing journey together! 
 
Best, 
 
Bruce 
cc S Gold, J Hauser, J Bowman, L Bowman, G Brandt, L Yaeger 
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B.2 Summary of Meeting with Freeman Dyson, Institute for 
Advanced Study, Mar 11, 2009 
 
The following report was written to Arnie Levine, IAS Professor/Member 
about the meeting between Bruce Damer, Galen Brandt, Freeman Dyson for 
which Dr. Levine had helped us prepare the night before while staying at the 
Marquand House. 
 
I had set up the 4pm appointment but Piet took us over to tea to find Freeman 
earlier, saving him having to rush back to his office. After a brief introduction 
by Piet (which put me at ease) Freeman walked Galen and I back to his 
office. We spoke about his passion for nuclear disarmament, shared 
experiences of the cold war (his wife is from the former E. Germany, I lived 
and ran software labs in post-Berlin wall Czechoslovakia) and then he invited 
me to launch into the reason I wanted to see him.  
 
For the most part it was me talking (30-40 minutes) with breaks wherein 
Freeman conjured up something interesting to add. I was taken aback by his 
blue eyes peering into mine without a single glance or blink. For a minute I 
thought he was going to conclude I was mad as a hatter but then during a 
break he uttered the single word "delightful". I later said that both this idea 
and I had also been described as "mad" by a British academic, to which he 
said "oh no, that's not a bad thing at all". I let him know we had shared this 
concept of ratcheting up complexity with you the night before and you had 
said it was a "holy grail" and had added some great insight (the changing of 
the laws at different levels) and this contributed greatly to the quality of the 
presentation.  
 
After I dared to take the concept far out... all the way to evolving Dyson's 
Trees (and suggested a new concept: Dyson's Disks) he still wasn't blinking 
or getting up to leave. We sat on in silence and he came out with more ideas. 
I mentioned my conference up at the Burgess Shale, a recent visit to 
Bletchley Park to look at the Colossus Rebuild, my work on asteroid gravity 
towing, mutual friend Tom Ray, and of getting in touch with his daughter 
Esther, my relationship with Charles Simonyi (who has supported my 
computer history project) and of our relationship with his son George (ref 
Barricelli's Universe, his upcoming book). He reacted positively, in a kind of 
visceral way, to each of these references. So in some real sense we took a 
jaunt together around a not insignificant fraction of Freeman's universe and 
personal contacts. I seemed to be hitting all of the major points. 
 
After sitting in silence further and expecting Freeman to summarily boot us 
out, he picked up his little disembodied strapless watch, but then came out 
with more ideas. I then broached the subject that perhaps either me or the 
EvoGrid research concept (or both) might some day find a home at the 
Institute (in SNS, or even Princeton University?) as it was truly in the spirit of 
pure theoretical fundamental Biology a la Baricelli and von Neumann. He then 
described (with palpable pride) of how Biology had finally come to the IAS 
(and of course, after he has retired ;). He then suddenly said "could you 
please add me to your mailing list or something" to which I graciously 
accepted (Freeman as advisor!). Galen mentioned we were coming back next 
week (Thursday) to which Freeman said "wonderful" and jumped up to look at 
his calendar. So we are going to meet with him again on Thursday and you 
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again too if you are around. I know Piet has also expressed a desire to meet 
with you and us as well and that could be very valuable.  
 
As I promised Freeman we would return I sensed he might want just myself 
and Galen at our follow-up meeting to clarify the EvoGrid concept and about 
us as people. I will show him some funny yet provocative visuals (a whimsical 
EvoGrid movie treatment I made with our NASA animator), early outputs from 
the simulator and my wild diagrams (vaguely Feinman-esque) of the 
proposed architecture. He is traveling the following Saturday to Kazakhstan to 
be with Esther and to watch Charles (or Ester if Charles is somehow bumped 
from his second trip) launch into space as a tourist. So this may be the last 
chance to meet Freeman for a while. 
 
I believe Galen and I made a real connection with Freeman. At one of the 
points when he became silent, I injected "I would like to be able to take some 
of your ideas forward" and mentioned that I was three years shy of fifty (about 
forty years younger than him) and hoped I had enough remaining brainpower 
to do something in the world, to which Freeman replied "don't worry, you can 
get a great deal done in forty years". 
 
-Bruce 
 
Note: a follow-up communication with Prof. Dyson occurred in June 2011 
where the results of the work and the next work on the CREATR model were 
presented to him. He looked at a short abstract and Springer book chapter 
and was provided access to the full thesis. 
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B.3 Biota Podcasts Discussing the EvoGrid 
 
The notes and audio from all of the Biota podcasts, produced and hosted by 
Tom Barbalet, are available at: 
http://www.biota.org/podcast/ 
 
Listing of Biota Podcasts where the EvoGrid or its predecessors were 
discussed, in reverse chronological order, 2010-2006: 
 
Biota Special: Miro Karpis, WebGL and the Artificial Life Forum [October 16, 
2010] Tom Barbalet welcomes on Miro Karpis to discuss Miro's introduction to 
artificial life, his work with WebGL on the EvoGrid and the new artificial life 
forum (currently in beta). 
 
Biota.org Live #71: Warming Barns the World Over [August 6, 2010] Bruce 
Damer and Tom Barbalet discuss the EvoGrid, ALIFE XII and the rise of 
SecondLife compatible artificial life simulations.  
 
Biota.org Live #62: DarwinAtHome and EvoGrid Updates [January 23, 2010] 
Tom Barbalet is joined by Gerald de Jong and Peter Newman to discuss their 
respective projects.  
 
Biota.org Live #54: Great Projects [September 18, 2009]  Eric Burton, Bruce 
Damer and Tom Barbalet discuss a number of great open source artificial life 
projects.   
 
Biota.org Live #53: Post-Singular and Post-Prize [September 4, 2009] Tom 
Barbalet and Bruce Damer are joined initially by Eric Burton to discuss the 
Singularity movement. They are then joined by William R. Buckley and briefly 
Rudolf Penninkhof to discuss prizes and the artificial life community. 
 
Biota.org Live #52: Steve Grand [August 21, 2009]  Tom Barbalet is joined by 
Steve Grand, William R. Buckley, Luke Johnson and Bruce Damer to discuss 
a wide variety of topics.  
 
Biota.org Live #49: Bankers Beware [July 3, 2009]  Peter Newman, Jeffrey 
Ventrella, Bruce Damer and Tom Barbalet discuss the EvoGrid and artificial 
life's role in contemporary warfare.  
 
Biota.org Live #48: Value and Peter Newman [June 19, 2009] Gerald de Jong 
and Tom Barbalet are joined by Peter Newman to discuss the implementation 
of the EvoGrid, what OpenSim means to artificial life and finding the value in 
artificial life.   
 
Visions of the EvoGrid #1: Scott Schafer (Part 1) [June 2, 2009] Scott Schafer 
talks with Tom Barbalet about his particular vision of the EvoGrid. 
 
Visions of the EvoGrid #1: Scott Schafer (Part 2) [June 2, 2009] Scott Schafer 
talks with Tom Barbalet about his particular vision of the EvoGrid. 
 
Biota.org Live #46: Spheres of Influence [May 22, 2009] Jeffrey Ventrella, 
Gerald de Jong and Tom Barbalet talk about spheres, the reality of the 
EvoGrid and global warming vs simulation.  
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Biota.org Live #45: Surviving Chaos [April 17, 2009] Rudolf Penninkhof, 
Bruce Damer, Gerald de Jong and Tom Barbalet talk about a variety of topics 
linking with the ideas of artificial life in chaotic environments.  
 
Biota.org Live #44: Summoning the EvoGrid [March 29, 2009] Dick Gordon 
and Tom Barbalet talk with Bruce Damer about his recent EvoGrid tour and 
where the EvoGrid is currently.  
 
Biota.org Special: Bruce Damer at FLinT [February 24, 2009] Bruce Damer 
presents to FLinT. http://www.greythumb.org/blog/index.php?/archives/369-
Bruce-Damer-at-FLinT.html 
 
Biota.org Special: Bruce Damer's PhD Transfer [February 16, 2009] Bruce 
Damer presents an introduction to his PhD on the EvoGrid at SmartLabs in 
London. 
 
Biota.org Live #42: Mark Bedau [February 6, 2009]  Bruce Damer, Dick 
Gordon and Tom Barbalet talk with Mark Bedau on wet artificial life and a 
number of additional topics.  
 
Biota.org Live #40: Larry Yaeger Returns [January 9, 2009] Larry Yaeger, 
Bruce Damer and Tom Barbalet talk about algorithms and teaching artificial 
life.  
 
Biota.org Live #39: EvoGrid Broad [December 12, 2008] Bruce Damer and 
Tom Barbalet discuss the EvoGrid Broad.  
 
Biota.org Live #38: the Hobby of Artificial Life [November 28, 2008] Bruce 
Damer and Tom Barbalet talk about artificial life as a hobby.  
 
Biota.org Live #37: the Very Long Winter [November 14, 2008] Bruce Damer, 
Gerald de Jong and Tom Barbalet talk about the EvoGrid and an artificial life 
winter. This show is concluded with Fien and Mitch's version of Black Hole 
Sun.  
 
Biota.org Live #36: the Cathedral and the Spider [October 31, 2008] Dick 
Gordon, Jeffrey Ventrella, Gerald de Jong and Tom Barbalet talk about two 
dividing topics - religion and spiders.  
 
Biota.org Live #34: Open Source Continued [October 3, 2008] Bruce Damer 
and Tom Barbalet discuss starting an open source project plus more 
advanced open source topics.  
 
VideoBiota.org Special: Biota 3 Break-Out Session, 1999 [September 27, 
2008]  This break-out session from Biota 3 in 1999 features a number of 
people discussing a future project very similar to the EvoGrid. Thanks to Al 
Lundell for this fantastic footage! 
 
Biota.org Live #33: How to Promote Your Project [September 19, 2008] Scott 
Davis, Travis Savo, Bruce Damer and Tom Barbalet discuss project 
promotion.  
 
Biota.org Live #26: the EvoGrid (August Update) [August 1, 2008]  Bruce 
Damer returns to talk about his trip to the UK and the future of the EvoGrid.  
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Biota.org: Bruce Damer at GreyThumb London [July 11, 2008] Bruce Damer 
talks at GreyThumb London  7/28/08 
 
VideoBiota.org Special: Bruce Damer before GreyThumb Silicon Valley [June 
24, 2008] Bruce Damer talks about Biota, GreyThumb and the EvoGrid 
before GreyThumb Silicon Valley. Thanks to Al Lundell for this fantastic 
footage! 
 
Biota.org Live #22: What is the Philosophy of Artificial Life? [June 20, 2008] 
Gerald de Jong, Bruce Damer and Tom Barbalet explore the Philosophy of 
Artificial Life.  
 
Biota.org Live #21: What's the Future for Biota.org? [June 13, 2008] Bruce 
Damer and Tom Barbalet discuss the many possible directions of Biota.org in 
the future.  
 
Biota.org Live #20: the EvoGrid (May Update) [May 30, 2008] Scott Schafer, 
Dick Gordon, Bruce Damer and Tom Barbalet talk about the EvoGrid 
amongst other things. 
 
Biota.org Live #14: the EvoGrid (April Update) [April 18, 2008] Jeffrey 
Ventrella, Bruce Damer and Tom Barbalet return to discuss the EvoGrid. 
 
Biota.org Live #13: Where's the Secret Sauce? [April 11, 2008] Jeffrey 
Ventrella, Bruce Damer and Tom Barbalet begin a thought-experiment rich 
discussion on whether a closed break-through will benefit the artificial life 
community.  
 
Biota.org Live #10: the EvoGrid [March 22, 2008]  Travis Savo, Adam 
Ierymenko, Brian Peltonen, Bruce Damer, Justin Lyon, Gerald de Jong and 
Tom Barbalet talk about the EvoGrid. 
 
Biota.org: Bruce Damer at GreyThumb Boston [March 3, 2008]  Bruce 
Damer introduces the EvoGrid at GreyThumb Boston (with a brief history 
about his work and Biota.org). 
 
Biota.org Live #4: Surreal and Possible Worlds [February 1, 2008]  Justin 
Lyon, Bruce Damer and Tom Barbalet discuss the environment that 
surrounds the initial ideas of artificial life development. They discuss visual 
impact, user interface, the background philosophy and the impact of early 
education in artificial life. 
 
Biota.org: Questions to Will Wright + Lecture from Rudy Rucker [January 30, 
2008] From a space/avatars conference at NASA Ames Research (January 
26-27, 2008), questions to Will Wright and a lecture from Rudy Rucker. 
 
Biota.org Live #3: The Ultimate Project (part 2) [January 25, 2008] Tom 
Barbalet raps solo for forty-two minutes and is then joined by Jeffrey Ventrella 
who talks about his development experiences in contrast.  
 
Biota.org Live #2: The Ultimate Project [January 18, 2008] Tom Barbalet talks 
with Jeffrey Ventrella and Bruce Damer about the format of the ultimate 
artificial life project. 
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Biota.org Live #1: An Introduction [January 11, 2008] Tom Barbalet talks with 
Justin Lyon and Bruce Damer about the history and directions in artificial life. 
 
Biota.org Chat: Bruce Damer [October 23, 2007] Space, science books, 
SecondLife update, graphics and artificial life politics. 
 
Biota.org Chat: Bruce Damer [June 19, 2007] Communicating and nurturing 
artificial life with discussions on SecondLife, Spore and Breve. 
 
Biota.org Conversation: Is Open Source Good for Artificial Life? [January 20, 
2007] Gerald de Jong, Pedro Ferreira, Bruce Damer and Tom Barbalet 
discuss Open Source in Artificial Life. 
 
Biota.org: Bruce Damer [June 27, 2006] Bruce talks about the Biota 
conferences, Biota.org and Digital Space. 
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Appendix C: Detailed Implementation and Source Code 
Examples 
 
Complete EvoGrid Project Documentation is on the web at: 
http://www.evogrid.org/index.php/Category:Prototype2009_Documentation 
 

C.1 Components 

Simulation Manager  

This component acts as the central data distribution point for the batch 
processing. This uses HTTP for communication, and provides either human 
targeted XHTML or machine readable JSON.  

The Simulation Manager accepts stores and provides:  

• Specification for pending simulation jobs 
• Histories of completed simulations, for processing by analyzer 

functions  
• Statistics generation by analyzer functions, for processing by 

searching functions  
• Scores generated by both analyzer functions and searching functions.  

Due to the amount of data being stored and transmitted, the hardware 
requirements for a Simulation Manager include disk for file storage, and 
database storage.  

The Simulation Manager provides a method for daemons to request 
“pending” variations on data to be processed. This allows the Simulation 
Manager to choose what order data should be processed in, particularly 
simulation specifications.  

To date, the selection method used is ordering by the “priority” property, then 
random selection from items with the highest priority.  

Statistics and scores are currently accepted in an open manner, in that any 
statistic or score name can be used, and this will be automatically added to 
the storage database.  

If there are no pending simulation specifications, then the Simulation 
Manager generates new ones, by providing random parameters. The random 
parameters include the number of atom types present in the simulation. 
Currently, this seed generation is the only point capable of varying the 
number of atom types present. The current search function implementation 
does not alter this.  

Simulator  

The Simulator component retrieves pending simulation job specifications from 
the Simulation Manager, performs these jobs and submits the history back to 
the Simulation Manager.  
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This is a multiple stage process.  

1. The daemon executable retrieves a JSON formatted specification for 
the simulation.  

2. The daemon generates any data not specified in the JSON 
specification. This includes atom position, velocity and type, based on 
information that must be in the JSON specification.  

3. The daemon produces a GROMACS format simulation specification 
file. This is specified in the GROMACS binary TPR format. The 
Energy Minimization option is specified, which instructs GROMACS to 
remove any overlapping or impossible placement of atoms, due to 
random generation.  

4. GROMACS is executed, with the TPR file for configuration.  
5. The daemon reads the produced TRJ file, merging the energy 

minimized atom positions into the simulation specification.  
6. The daemon produces a GROMACS TPR file, with Molecular 

Dynamics enabled.  
7. GROMACS is executed, with the TPR file for configuration.  
8. The daemon reads the produced TRJ file. The atom positions and 

velocities are extracted.  
9. Bond formation is performed by the daemon.  
10. History data in EvoGrid format is written to disk.  
11. Steps 6 through 10 are repeated, until the number of repetitions 

specified in the JSON specification has been completed.  
12. History data is submitted to the Simulation Manager.  

Specific Details  

GROMACS 3.3 is used. The TPR file specifies only a single processor to be 
used, for simplicity.  

The run/stop/process usage of GROMACS is inefficient, but was the simplest 
way to implement the bond formation. This method of bond formation was 
chosen as the Quantum Mechanics features of GROMACS (which performs 
the same functionality) was not understood at the time. Part way through 
development it was realized that using QM would be a much better 
implementation, however it was decided to continue with implementing the 
current basic method to allow development to continue on the other parts of 
the system as soon as possible.  

Analysis Daemon  

This daemon retrieves simulation histories then performs per-frame analysis 
on the data. Each analysis produces a single floating point value, specified 
per frame.  

Once per-frame analysis is completed, score analysis is performed by 
processing the per-frame statistics. Each score analysis produces a single 
floating point value, that describes the simulation history as a whole.  

The per-frame statistics and simulation scores are submitted to the 
Simulation Manager.  
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Search Daemon  

This daemon retrieves simulation scores and performs analysis on these to 
produce a single floating point score. This score is relevant to the particular 
search being performed.  

The search daemon submits the specifications of any additional simulations it 
requires, to be queued for later simulation. The submitted specifications 
include the “parent simulation” property, which specifies which simulation 
result was used to produce the new simulation specification, and the “priority” 
property, which is set to the search score.  

C.2 Energy Distribution 
 
Find this section online at: 
http://www.evogrid.org/index.php/Prototype2009:_Energy_Distribution 

The following are the pseudocode formulae used to derive the velocity of 
generated particles in generator/molecule. The base formulae are taken from 
evogrid-analysis/temperature, which is taken from gmxdump: 

ekin = ((vel.x * vel.x * mass ) / 2) + ((vel.y * 
vel.y * mass ) / 2) + ((vel.z * vel.z * mass ) / 2)  

temp = (2 * ekin) / ( 3 * BOLTZ ) // 3 * due to 3 
axis  

2 * ekin = temp * 3 * BOLTZ  

ekin = ( temp * 3 * BOLTZ ) / 2  

((vel.x * vel.x * mass ) / 2) + ((vel.y * vel.y * 
mass ) / 2) + ((vel.z * vel.z * mass ) / 2) = ( 
temp * 3 * BOLTZ ) / 2  

(vel.x * vel.x * mass ) + (vel.y * vel.y * mass ) + 
(vel.z * vel.z * mass ) = ( temp * 3 * BOLTZ )  

mass * ( (vel.x * vel.x ) + (vel.y * vel.y ) + 
(vel.z + vel.z) ) = temp * 3 * BOLTZ  

(vel.x * vel.x ) + (vel.y * vel.y ) + (vel.z + 
vel.z) = (temp * 3 * BOLTZ / mass)  

To get a single component, we'll consider as if we've divided both sides by 
three. We'll use a Maxwell-Boltzman distribution to make this randomly 
distributed over all three axes: 

vel.x * vel.x = (DIST * temp * BOLTZ ) / mass  

vel.x = sqrt( ( DIST * temp * BOLTZ ) / mass )  
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C.3 Bond Formation 

Find this section online at: 
http://www.evogrid.org/index.php/Prototype2009:_Bond_Formation 

The bond formation code currently in place is primitive. It met the requirement 
of having bonds be able to form during simulation time and effect the result of 
the simulation from that point. These requirements allowed us to have 
working data for developing the other parts of the system. It is our intention to 
replace this with GROMACS QM, and have bonds be an emergent property 
from the QM.  

The bonds are formed based on the distance between atoms. The maximum 
distance for atom bonding is specified in the simulation specification. This 
specification applies to all atom types.  

The current algorithm used for bond formation is such:  

1. For each atom, find neighbors within the bonding range.  
2. If already bonded, Done.  
3. If both atoms have less then 4 bonds, form a bond. Done.  
4. For each atom, test the separation distance for their existing bonds 

against the current potential bond. Remove the largest separation 
bond that is larger then the potential bond.  

5. Form the bond.  

 

C.4 Example Process 

Find this section online at: 
http://www.evogrid.org/index.php/Prototype2009:_Example_Process 

Simulation Manager 

The Simulation Manager contains a list of future simulation jobs with the 
following specifications: 

• These are neighbors of completed simulations, varied by one option 
(dimension).  

• Each future job has an assigned priority score, built from statistic 
analysis of neighbor completed simulation.  

o NOTE: Initial simulations are selected randomly, to seed future 
job generation.  

The Simulation Manager contains list of un-analyzed simulation jobs with the 
following specifications:  

• These are simulation runs that do not have the full range of statistics 
or scores.  



311 

Simulator 

Simulation system requests new job from Simulation Manager  

• Receives initial simulation condition parameters  
o This may or may not include specific particle/atom information  
o If not, atoms are generated  

 Atoms are randomly placed  
 Atoms are energy minimized to remove overlaps from 

random generation  
• Generates GROMACS binary format topology.  
• Loops:  

o Passes topology to GROMACS to perform short simulation 
step (1 second?)  

o Load trajectory (atom motion) data generated by GROMACS  
o Analyze data for bond formation  

 Create new bonds (molecules)  
 This includes atom exchange  

o Update topology  
o Loop until full simulation time has been generated  

• Submit trajectory data to Simulation Manager  
• Submit basic statistics (bond creation) to Simulation Manager  

Analysis 

Analysis system requests new analysis job  

• Receives simulation trajectory data  
• Perform statistical analysis  
• Analyze statistics to produce scores  
• Submit statistical analysis to Simulation Manager  
• Submit scores to Simulation Manager  

Simulation Manager  

Simulation Manager receives scores  

• Generate priority for neighboring simulations  
o Certain score types may emphasis work on specific neighbors  

• Submit neighboring simulations to future job queue  

  

C.5 Simulation Manager API 

Find this section online at: 
http://www.evogrid.org/index.php/Prototype2009:_Simulation_Manager_API 
 

General Design  

The Simulation Manager is implemented as JSON transferred over HTTP 
requests. This uses GET and PUT to retrieve or submit information, with any 
information not in the URL to be in HTTP headers.  
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All requests start from a base URL. On the development server, this is  

 http://wizarth.is-a-geek.org/development/evogrid/ 

This URL uses Apache mod_rewrite to convert to  

 http://wizarth.is-a-geek.org/development/evogrid/index.php 

and is just shortened for neatness. In the Alpha 10-01 VM Images, the path is  

 http://192.168.230.2/index.php 

When accessed directly, the base URL produces a human readable status 
page.  

The URL used to access a resource follows a pattern of  

 [base_url]/[simulation id]/[property] 

Additionally, [simulation id] can be the magic word "pending". Property can be  

• parameters  
• history  
• statistics  
• scores  

For example:  

 http://192.168.230.2/index.php/pending/parameters 

Providing a incorrectly formatted simulation id will return a HTTP 400 - Bad 
Request.  Redirect means - Provides a HTTP 302 response, and provides a 
Location: header.  When using a GET request, if the data is not available, 
returning HTTP 404 is the standard response.  

See Prototype2009: Data Formats for the JSON used in these requests.  

GET  

parameters  

• pending - Will redirect to a simulation id that hasn't been simulated  
• simulation id - Will provide the parameters for the specific simulation  

history  

• pending - Will redirect to a simulation with a history but no statistics  
• simulation id - Will provide the history for the specific simulation  

statistics  

• pending - Returns HTTP 400, pending is not valid for statistics  
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• simulation id - Will provide the statistics for the specific 
simulation scores  

• pending - Requires the X-Search-Score header be included in the 
request. This will return the scores for a simulation that has scores, 
but not the X-Search-Score  

• simulation id - Will provide the scores for the specific simulation  

PUT  

Unless specified, use of pending will return HTTP 400.  

parameters  

• pending - Will submit the simulation parameters as a new simulation  

All other parameters (like a simulation id) will return HTTP 400.  

history  

• simulation id  
o If simulation already has a history, returns HTTP 403 

(Forbidden).  
o Otherwise, history is stored statistics  

• simulation id  
o If simulation doesn't have a history, returns HTTP 403 

(Forbidden)  
o Store statistics, discarding duplicates of already know statistics  

 While in development - If statistic name is not 
recognized, it is added as a new type of statistic 
scores  

• simulation id  
o If simulation doesn't have a history, returns HTTP 403 

(Forbidden)  
o Store scores, discarding duplicates of already known scores  

Future Developments  

• Require identifiers/accounts for PUT actions, for logging and security 
(prevent poisoning).  

• Use multiple sources for all processing that is farmed out (prevent 
poisoning).  

• Break searches separately from scores.  
o Have searches require sets of scores, specified server side.  
o Concept: /pending/search/search-identifier rather then X-

Search-Score ?  
• PUT /pending/parameters will include which search it's being 

submitted for.  
• GET /[simulation id]/ (without parameters/history/statistics/scores/etc) 

will return a human formatted status page for that simulation  
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• Human readable pages could use a microformats concept to remain 
machine parsable?  

 

C.6 Scoring and Searching 

Find this section online at: 
http://www.evogrid.org/index.php/Prototype2009:_Scoring_and_Searching 

Statistics are generated for each frame of the simulation, then scores are 
generated from those. These scores are used to calculate the fitness used for 
the searching functionality.  

The Analysis Daemon is implemented as a modular process. The core 
executable loads external modules, which register their names and 
calculation functions on being loaded. The core retrieves the history from the 
Simulation Manager, parses it and feeds the frames into the calculation 
functions as they are parsed. After each frame has been processed by the 
analysis function, the frame data is discarded by the core. Any module that 
wishes to maintain a state must do so itself.  

Once all frames are processed, the results from the calculation functions are 
passed to any registered scoring functions.  

The accumulated per frame statistics and the scores are then submitted to 
the Simulation Manager.  

The currently implemented modules are:  

• Temperature  
o Per Frame  

 Temperature Matrix 
Divides the atoms into a grid, calculates the average 
temperature of each cell. This is calculated from the 
atoms velocity and mass. Uses a pre-processor to 
allow it to perform the calculation in one pass, rather 
then recalculating for each grid cell (which is returned 
as a single statistic)  

 Simulation Wide Temperature 
Provides the accumulated temperature, across all the 
cells  

o Score  
 Temperature Mean 

The mean temperature across all frames of the 
simulation.  

 Temperature Mean Change 
The difference between Temperature Mean and the 
initial temperature provided in the simulation 
specifications.  

• Errors  
o Score  

 Failed Frames 
A negative score that indicates how many frames of the 
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statistics are 0. This indicates that no history was 
available for that frame, due to the simulator crashing.  

• Molecules  
o Per Frame  

 Max Molecule Size 
The size of the largest molecule in this frame.  

 Avg Molecule Size 
The average molecule size.  

o Score  
 Avg Avg Molecule Size 

The mean average of the Avg Molecule Size statistic. 
This indicates multiple molecules forming and 
persisting.  

 Avg Max Molecule Size 
The mean average of the Max Molecule Size statistic. 
This indicates large molecules forming and persisting.  

 Max Avg Molecule Size 
The maximum value of the Avg Molecule Size statistic. 
This indicates the largest amount of molecules formed, 
or the formation of few large molecules.  

 Max Max Molecule Size 
The maximum value of the Max Molecule Size statistic. 
This indicates the size of the largest molecule formed in 
the simulation.  

Searching and branching  

The currently implemented search daemon is “search-evogrid-complexity-1”, 
to indicate that this is a search score, for the EvoGrid project, searching for 
complexity, and is the first algorithm for this.  

This search is simple. If Failed Frames are zero, then all the scores from the 
Molecule module are added together. This value is used as the fitness score 
for the searching function. The use of these attributes for the fitness function 
will search towards production of long chains.  

The specifications for the simulation that produced this score is then copied 
and varied multiple times. Each variation is the same as the original, with one 
floating point variable altered by 1%, either incrementing or decrementing. 
Each of these single variations are submitted to the Simulation Manager as a 
new specification.  

The number of variable parameters is dependent on the number of atom 
types present in this simulation. The parameters are:  

• Density  
• Temperature  
• Bond Outer Threshold  

o Atom Type Radius  
o Atom Type Mass  
o Atom Type Q  

 Atom Interaction Force c6  
 Atom Interaction Force c12  
 Atom Interaction Force rA  
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 Atom Interaction Force krA  
 Atom Interaction Force rB  
 Atom Interaction Force krB  

Additionally, the ratio of atom types is varied in the same manner, with each 
value increased or decreased by 1 percent, then normalized so the ratios 
continue to make up 1.0 .  

Due to the interaction forces between each atom type being mutable, as well 
as the ratios, the number of variations submitted to the Simulation Manager 
varies from 138 (for 3 atom types) to 1286 (for 10 atom types).  

Contiguous Time  

As currently implemented, the newly submitted simulation specifications do 
not include specific initial conditions, such as atom position, velocity or 
bonding. As such, any molecules formed during the simulation will not carry 
on to any of the branched submitted simulation specifications. This means the 
search is performed purely among the initial specification meta data.  

Future development involving contiguous time could use many of the 
currently used variations, however variations to ratios, density and 
temperature would not be relevant. Additional variations that are possible 
would include random alterations to atomic velocities, or random removal of 
existing bonds.  

 
C.7 Source Code Examples for Scoring and Searching 
 
priority_simple used in Experiments 1 & 2 
 
/** 
Assigns the score as the priority. 
This is the simplest priority function, but does not take 
any measures to avoid a wide search at a plateau. 
*/ 
 
float priority_simple( const struct 
simulation_parameters* sim_params, float score ) 
{ 
   return score; 
} 
 
// Copy-paste from evogrid-search-complexity 
float get_score( const char* score_name, 
igraph_vector_ptr_t* score_names, igraph_vector_t* 
score_values ) 
{ 
   int i; 
   for( i = 0; i < 
igraph_vector_ptr_size(score_names);++i)  
 if( strcmp( score_name, 
char*)VECTOR(*score_names)[i])==0) 
    return VECTOR(*score_values)[i]; 
   return 0; 
} 
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priority_generation used in Experiments 4 & 5 
 
/** 
Assigns a score based on the improvement in score 
compared to the previous generation. 
Priority is calculated relative to the priority of the 
previous generation, allowing a promising line to 
"gather" priority that is decreased over generations of 
poor improvement. 
*/ 
 
float priority_generation( const struct 
simulation_parameters* sim_params, const char* 
score_name, float score ) 
{ 
   /* 
   Get the simulation_parameters for the parent 
simulation 
   Get the priority for the parent simulation. 
   Get the scores for the parent simulation 
   Get the fitness score for the parent simulation 
   Calculate the priority from this information. 
   */ 
   float parent_priority = 1, parent_fitness = 0; 
   struct simulation_parameters parent_simulation; 
   struct score_handle* parent_score_handle; 
   float priority; 
 
   if( sim_params->parent_id ) 
   { 
      retrieve_simulation_parameters( sim_params-
>parent_id, &parent_simulation ); 
      parent_priority = parent_simulation.priority; 
      parent_score_handle = init_score_handle(); 
      register_score_function( parent_score_handle, 
score_name, &priority_generation_score_callback ); 
      set_score_simulation_id( parent_score_handle, 
sim_params->parent_id ); 
      priority_generation_score_callback_ctx.score_name = 
score_name; 
      priority_generation_score_callback_ctx.score = 
&parent_fitness; 
      process_score_handle( parent_score_handle ); 
      clean_simulation_parameters( &parent_simulation ); 
   } 
   priority = parent_priority * ( 0.9 * exp( score 
parent_fitness ) ); 
   return priority; 
} 
 
 

C.8 Source Code Examples for Branching 

 
See this lengthier source code online at: 

http://www.evogrid.org/index.php/Prototype2009:_Scoring_and_Searching#Searchin

g_and_branching 
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